1) READ A SHORT 2) WORK THE 3) TAKE THE
LESSON EXAMPLES ONLINE EXERCISES

o o
o e e e 6 0 o
e o o o o o © o O O 0 0 O O O
'».....-’-.,qu’.’ﬂ‘,

¢ 5) 4 =5

huy 7,

L@, C ° - < :
2 b & o o Jiw hallly o S p Sy o @) G0 g5 JBAZe

LEARN SCALA 5
THE FAST WAY!

ALUIN ALEXANDER

Copyright

Learn Scala 3 The Fast Way! (Book 1: The Adventure Begins)
Copyright 2022 Alvin J. Alexander!

All rights reserved. No part of this book may be reproduced without prior written
permission from the author.

This book is presented solely for educational purposes. While best efforts have been
made to prepare this book, the author makes no representations or warranties of any
kind and assumes no liabilities of any kind with respect to the accuracy or completeness
of the contents, and specifically disclaims any implied warranties of merchantability or
fitness of use for a particular purpose. The author shall not be held liable or responsible
to any person or entity with respect to any loss or incidental or consequential damages
caused, or alleged to have been caused, directly or indirectly, by the information or
programs contained herein. Any use of this information is at your own risk.

Version 0.1, published August 29, 2022

Buy the book and find/report issues:
alvinalexander.com/scala/learn-scala-3-the-fast-way-book?

"https://alvinalexander.com
*https://alvinalexander.com/scala/learn-scala-3-the-fast-way-book

https://alvinalexander.com
https://alvinalexander.com/scala/learn-scala-3-the-fast-way-book
https://alvinalexander.com
https://alvinalexander.com/scala/learn-scala-3-the-fast-way-book

Other books by Alvin Alexander:

" . D
OREILLY
Qrg.%,o_

Scala
Cookbook

Recipes for Object-Oriented and
Functional Programming.

Alvin Alexander

Scala Cookbook, 2nd Edition (Amazon.com)?

APPROACH TO LEARNING
FUNCTIONAL PROGRAMMING

ALVIN ALEXANDER

Functional Programming, Simplified (alvinalexander.com)*

*https://amzn.to/3dul pMR
*https://alvinalexander.com/scala/functional-programming-simplified-book

https://amzn.to/3du1pMR
https://alvinalexander.com/scala/functional-programming-simplified-book
https://amzn.to/3du1pMR
https://alvinalexander.com/scala/functional-programming-simplified-book

O 0N N W=

NN N DN NN e et el e e e e e e e
Ul W N = O O 00N N Ul b WD = O

Contents

About This Early Release

About The Author

Welcome to Scala 3!

Why Learn Scala 3?

Your Setup For This Book

Note 1: Significant Indentation Syntax
Note 2: Comments

Beginning: The Scala REPL
Beginning: Printing With println
Variables: val Fields

Variables: var Fields

Variables: Explicitly Declaring The Data Type
Strings: Common Methods

Strings: Interpolators

Strings: Multiline Strings

Numeric Data Types

Constructs: Mathematical Expressions
Constructs: if/then/else
Expression-Oriented Programming (EOP)
Tuples

Collections: The List Class
Collections: Updating List Elements
Collections: Other Sequence Classes
Constructs: for Loops

Constructs: for Expressions

O U1 W =

15
17
19
21
25
27
31
33
35
37
41
43
47
49
51
55
57
61
63
67
71

CONTENTS

About This Early Release

This is an early release of this book, by which I mean that it’s like an alpha or beta of a
software application. I refer to this as a Version 0.1 release, and I anticipate that there
will be at least one more release before it’s complete.

The current issues I'm aware of are:

« The Github repository is not ready for release yet

« The online exercises are ready, but I'd like to add some more exercises (maybe
10-20% more)

« When you publish a book you need to go through a “final formatting” stage, and
I haven’'t done that yet

o I have a list of about 10-20 small issues that 'm aware of that I want to improve

Other than that, the book is about 270 pages long right now, and I don’t anticipate that
it will grow by more than 10 additional pages, so it’s close ... but not quite done yet.

Note that if you buy the PDF version of this early release here on Gumroad.com’, you
will be notified of updates as I make them available.

Thanks for reading, and I hope this is helpful!

All the best,
Alvin Alexander

Longmont, Colorado
August 29, 2022

'https://alvinalexander.gumroad.com/l/learn-scala3-fast

https://alvinalexander.gumroad.com/l/learn-scala3-fast
https://alvinalexander.gumroad.com/l/learn-scala3-fast

CHAPTER 1. ABOUT THIS EARLY RELEASE

About The Author

Hi, my name is Alvin Alexander, and I'm the author of this book. I want to tell you a

little about myself so I can share my qualifications, and also let you know why I wrote
this book.

In terms of qualifications, I've written the following books on Scala, which have sold
tens of thousands of copies:

Scala Cookbook, 1st Edition (700+ pages)
o Scala Cookbook, 2nd Edition (700+ pages, written for Scala 3)!

Functional Programming, Simplified (700+ pages)?

An introductory book for Scala 2, titled Hello, Scala
o Hello, Scala became the basis for the official Scala Book

o When Scala 3 came out, I co-wrote the Scala 3 Book for the official Scala website

All of those books are rated 4.5 stars and higher, and Functional Programming, Simpli-
fied has been one of the highest-rated, best-selling books on functional programming
since its release.

In addition to these books I also write about Scala on my website, alvinalexander.com?,
which receives millions of page views every year, and I occasionally post small Scala
tips on my Twitter account”.

I like to think that my niche in the writing world is in making complicated topics easier
to understand. That’s always been my goal, and 'm glad to say that’s what people usually
tell me when they send me a “Thanks!” message.

'https://amzn.to/3dulpMR

*https://alvinalexander.com/scala/functional- programming-simplified-book
*https://alvinalexander.com

*https://twitter.com/alvinalexander

https://amzn.to/3du1pMR
https://alvinalexander.com/scala/functional-programming-simplified-book
https://alvinalexander.com
https://twitter.com/alvinalexander
https://amzn.to/3du1pMR
https://alvinalexander.com/scala/functional-programming-simplified-book
https://alvinalexander.com
https://twitter.com/alvinalexander

4 CHAPTER 2. ABOUT THE AUTHOR

Why | wrote this book

Having written all those books, you might wonder why 'm writing another book about
Scala. The first part of my answer is that I want to:

o Write a book about Scala 3 for people who are new to Scala.
« Write it as a series of “one topic, short lessons” that are as simple as they can be.

 Keep it under 250 pages. (Having written three books over 700 pages long, I
know those are hard to write, and can be intimidating to read.)

And finally, the biggest reason:
« To help you retain what you read!
To do that I've created:

« A Github repository that includes most of the code shown, along with a few small
projects that are good for beginners.

« Online exercises for every lesson.

You'll learn more about all of this as you go through the book, so for now I'll leave it at
that.

Welcome to Scala 3!

Now that you know about my background, let me welcome you to this book, which is
an introductory book about the Scala 3 programming language — the most modern,
expressive, consistent, interesting, programming language I know.

Scala 3!

In this book I will often say “Scala 3” and not just “Scala” That’s because Scala 3 —
which was released in the summer of 2021 — has some significant changes from Scala
2, and I generally won't be writing about those differences. Scala 3 is the future of Scala,
so that’s all this book focuses on.

Who this book is for

I want to be really clear that this book is for developers who are new to Scala, and want
to learn the latest version of Scala. It is for beginners, people who are new to Scala 3.

While I expect that you are new to Scala 3, I do assume that you have a little program-
ming background. My assumptions are:

« You have used another programming language, such as Java, C#, Python, C, or
another language

« This means that you have seen how to write at least a little bit of code, and also
compile that code (if necessary) and run it

 You may have used Scala 2, but you're still beginning with it

 You are familiar enough with object-oriented programming (OOP) that you
know what a class is

« Youre comfortable working at your operating system command line

6 CHAPTER 3. WELCOME TO SCALA 3!

Why this book is unique

I think the most unique thing about this book is that it’s for people who want to remem-
ber what they learn. When I came across the book, A Smarter Way to Learn JavaScript!,
I was really impressed with the online, interactive component of that book, so I've
based a lot of my approach on that book, along with my additional research about how
human beings learn and remember new things.

So helping you remember what you learn is THE primary goal of this book. To help
achieve that goal, this book has a Github source code repository you can download
and experiment with, and a companion website with exercises for each lesson.

Many — many! — studies show that humans don’t learn by simply reading. We have
to do other things like work through exercises and write code to retain what we learn,
so this emphasis is a HUGE thing that makes this book different and unique!

My own experience from my college days was that the only possible way I could pass a
thermodynamics class was to work all the exercises. Initially I tried what I had always
done — which was to read the book and then pass the tests — but that failed miserably
(literally). That's when I came across this quote:

“One learns by doing the thing”

When I read that quote I realized I wasn’t really putting in the work that was necessary
to pass this class, and I clearly wasn't learning. This was one of those “lightbulb going
on over your head” moments in life, and it became clear that the only way I was going
to pass this class was to work all the exercises in the book.

Exercises and code examples
At the end of each lesson you’ll find a link to that lesson’s online exercises. The exercises
won't take long, and they often present the material in a way that’s different from the

book to test your understanding.

You'll also find that these exercises are a great way to test your knowledge in the future.

'https://amzn.to/3Cpn]J6t

https://amzn.to/3CpnJ6t
https://amzn.to/3CpnJ6t

For instance, imagine that you get away from using what you learned for a week or two.
In that situation you can come back to the exercises (rather than re-reading the book)
to see what you really rememeber.

In addition to the online exercises, the book will eventually also have a corresponding
Github repository of example code that you can use and modity. (In this early release
that repo is TBD.)

This is a small Scala 3 book

One additional note I want to add is that writing a small book on Scala is hard. If you
look at the landscape of Scala books you'll see that many of them are 600 pages or more.
That’s because of two things:

o Scala has a lot of terrific features, and we want to write about them all

o Scalais an object-oriented programming (OOP) language as well as a functional
programming (FP) language, and in some cases — such as covering the Scala
collections classes — that means there are OOP and FP versions of each class

I've learned that if you want to write a book about all of Scala, it’s just going to take a
lot of pages.

This also means that if one of your goals is to write an introductory book in 250 pages or
less, you can’'t write about everything. Therefore, I've had to make some tough decisions
about what to include in this book and what to leave out.

So that’s how how this became a book for Scala 3 beginners. I decided to forget about
writing about everything in one book, and just focus on the basics.

So my goal is to get you started on the basics of Scala 3, BUT, I do cover many features
in this book, and once you understand them, I believe it will be much easier to learn
the rest of them. I may follow this book up with another book to take your knowledge
to the next level, or you can learn those features in the Scala Cookbook (2nd Edition)?,
which was also written for Scala 3.

2https://amzn.to/3dulpMR

https://amzn.to/3du1pMR
https://amzn.to/3du1pMR

CHAPTER 3. WELCOME TO SCALA 3!

Why Learn Scala 3?

I hope you already have some idea of what Scala 3 is good for, but if you don't, let me
give you my completely biased opinion! :)

Scala offers a fusion of FP and OOP

Way back in 2010, technologies like Google Maps, Gmail, Facebook, and Twitter were
all relatively new, and pretty much the only FP language anyone had heard of was
Haskell. While I was wandering around Alaska, this was when I first learned about
Scala, and I learned that a distinguishing feature of it is that from its origin it has been
a fusion of FP and OOP.

Martin Odersky1 is the creator of Scala, and if you don’t know him, he studied under
Niklaus Wirth, who created several programming languages, including Pascal, which
was often used as a teaching language in colleges in the 1990s. Mr. Odersky originally
became known to me (and many others) as the person who brought generics to Java
in Java 5.

After that he created a research language named Pizza, and that work led him to create
Scala. When he created it he strongly believed that a fusion of FP and OOP was possible,
and has stated it like this:

The essence of Scala is a fusion of FP and OOP in a typed setting, with
functions for the logic, and objects for the modularity.

As this book progresses you'll see examples of what this means. But for now, just know
that this Fusion of FP and OOP is a hallmark of the Scala language.

'https://en.wikipedia.org/wiki/Martin_Odersky

9

https://en.wikipedia.org/wiki/Martin_Odersky
https://en.wikipedia.org/wiki/Martin_Odersky

10 CHAPTER 4. WHY LEARN SCALA 3¢

Scala is expressive

Scala is a concise language, but more importantly, it’s expressive. This means that you
can get a lot of meaning across in a small amount of characters, but you can also come
back to your code in the future and still read it.

For example, even though you may not have seen any Scala code before, I think you
can look at these examples and see that there are no unnecessary characters in these
examples, but they’re all very readable:

val a 1
val b = "two

// a "for loop"
for i <- 1 to 3 do println(i)

// a scala method
def minCa: Int, b: Int): Int =
if a < b then a else b

Sometimes when a language is advertised as concise it really means terse, which means
that it will be hard to read later. But as you’ll continue to see, Scala is expressive, not
terse.

Scala is consistent

On the official Scala website I wrote the pages that compare Scala to other program-
ming languages, and that work led me to realize that Scala is more consistent than other
programming languages. This is important, because it means that you don’t need to
learn a lot of new concepts or weird variations of syntax for different conditions. For
instance, this is the way you create some common data structures in Scala:

val a = List(1, 2, 3)

val b = ArrayBuffer(l, 2, 3)
val ¢ = Set(1, 2, 3)

val d = Map(l -> "a", 2 -> b)

Notice that each type of data structure is created the same way. This may seem like a
small point, but in other languages data structures are created with), [], and {} sym-

11

bols, while in Scala they are all just classes. You'll find this same consistency through-
out the Scala language.

A terrific JVM language

Simply put, IMHO, Scala is the best programming language available on the Java Vir-
tual Machine (JVM).

Using Scala you can create server-side applications using frameworks like the Play
Framework?, and many others. The Akka® library has the best “actors” library in the
world, and they also offer a serverless computing solution.

There are many other Scala libraries and frameworks, and these — along with other
FP libraries listed below — power some of the most high-performance websites in the
known universe!

The most modern FP libraries

Scala is also the home of two of the world’s best and most modern functional pro-
gramming libraries in Cats” and ZIO. It's amazing to think about it, but these truly are
World-Class, Best On Planet Earth FP libraries. At the time of this writing ZIO 2 is just
being released, and it doesn’t get any more modern than that.

A JavaScript replacement

Scala can also be compiled to JavaScript using the Scala.js* library. This means that
instead of writing client-side applications using JavaScript, you can use Scala! For in-
stance, the “exercises” website that accompanies this book is written with Scala.js. (I
share lessons on how to get started with Scala.js in the Scala Cookbook, 2nd Edition®.)

*https://www.playframework.com
*https://akka.io
*https://typelevel.org/cats
*https://www.scala-js.org
®https://amzn.to/3dulpMR

https://www.playframework.com
https://www.playframework.com
https://akka.io
https://typelevel.org/cats
https://zio.dev
https://www.scala-js.org
https://amzn.to/3du1pMR
https://www.playframework.com
https://akka.io
https://typelevel.org/cats
https://www.scala-js.org
https://amzn.to/3du1pMR

12 CHAPTER 4. WHY LEARN SCALA 3¢

Native executables

Scala can also be compiled to native executable applications with the Scala Native and
GraalVM tools. With these tools, Scala is a terrific language for writing command-line
applications and microservices.

A great scripting language

Thanks to a tool named Scala-CLI” — which you’ll learn about shortly — Scala is also
a terrific scripting language. Personally, I love being able to write server-side applica-
tions, client-side applications, native executables, and scripts with the same program-
ming language and its huge ecosystem of libraries.

Scala will change how you think

As someone said many years ago, a great thing about Scala is that it will change how
you think about programming. For instance, when I first used Java in the late 1990s I
wrote many, many custom for loops because that’s just the way things were done.

But thanks to the Scala collections classes you'll see that almost all of those custom for
loops fall into certain categories, like this:

« Filtering
o Transformational

o Informational

While in 2010 some people thought the methods on Scala’s collections classes were
unusual or overwhelming, these built-in methods are now basically industry standards.
These methods mean that instead of writing code like this:

// old way to create a new list from an old list
val newlList = LinkedList[Int]()
for

1 <- oldList

"https://scala-cli.virtuslab.org

https://scala-cli.virtuslab.org
https://scala-cli.virtuslab.org

13

if i>5
do
val j =1 * 2
newList ++ j
you do this:

val newList = oldlList.filter(_ > 5)
.map(_ * 2)

Given the fact that filter and map are both de facto industry-standard methods, which
code would you rather read?

I hope you’ll agree that the second example is better, simpler, and still very readable.
And if you've never seen anything like this before — fear not — you’ll know how to
read and write it by the end of this book!

If you want to work on “big data” applications, it may also help to know
that this is how you write code with Apache Spark®.

8https://spark.apache.org

https://spark.apache.org
https://spark.apache.org

14

CHAPTER 4. WHY LEARN SCALA 3¢

Your Setup For This Book

As we get close to the first programming lesson, let’s start getting you set up.

For most of the examples that are included in the book, all you need is a browser. I
show this as “Setup Option #2” below because I don’t think it’s the best approach, but
it’s still a good approach.

The reason it’s not the best approach is because I think the easiest way to run all of the
source code examples in the book’s Github repository is to have Scala installed on your
local computer. Therefore I present that as Option 1.

Setup Option 1: Install Scala-CLI

I work at the command line all the time, so for the purposes of this book I recommend
installing a tool named Scala-CLI'. By installing just this one tool, you’ll be able to run
all of the examples I show in the book on your computer.

Some benefits of Scala-CLI:

« It runs on your computer, so it’s generally faster
« This one tool downloads everything you need to run Scala
o It can be used to run all of my Github source code snippets

o It can also be used to run all of my Github scripts (which are small but complete
Scala applications)

o It lets you easily include third-party libraries in your code, such as libraries for
HTTP, JSON, databases, testing, etc.

« If/when your project gets to be large, you Scala-CLI has an option to export your
settings to a Scala build tool like sbt or Mill

'https://scala-cli.virtuslab.org

15

https://scala-cli.virtuslab.org
https://scala-cli.virtuslab.org

16 CHAPTER 5. YOUR SETUP FOR THIS BOOK

The main drawback of Scala-CLI is that it will download things like Scala 3 and a ver-
sion of Java, so it may require a few GB of storage space on your computer. (And yes,
I understand that can be a big consideration.)

If you want to use Scala-CLI?, just use the Installation link on their website.

Setup Option 2: Scastie

A second option is that if you don’t want to install anything on your computer, you can
also run most of the book’s examples online at the Scastie® website.

Scastie is a tool that’s created and maintained by the creators of Scala 3, and it lets you
run Scala code in your browser. All you have to do is type in your code, press Run, and
see the output.

If you're not sure

If you're not sure what you want, go ahead and start with Scastie, because it doesn’t
require anything to be installed on your computer. But if/when you get to a point
where you want to start running things on your local computer, come back here and
install Scala-CLI.

Note

A third option — which in 2021 was the primary option for working at the command
line — is to install the Scala SDK either by (a) manually downloading it, or (b) installing
it with another tool like SDKMAN. However, I believe that Scala-CLI is a significant
improvement over this this approach, so I recommend it instead.

At the time of this writing there is a proposal that Scala-CLI should be-
come the future of Scala at the command line, that’s how good it is.

*https://scala-cli.virtuslab.org
*https://scastie.scala-lang.org

https://scala-cli.virtuslab.org
https://scastie.scala-lang.org
https://scala-cli.virtuslab.org
https://scastie.scala-lang.org

Note 1: Significant Indentation Syntax

A BIG change from Scala 2 to Scala 3 is the introduction of something known as sig-
nificant indentation syntax. This means that instead of writing code like this in Scala
2:

for (i <- 1 to 10) {
println(i)
}

we now write that code without the curly braces, like this:

for i <- 1 to 10 do
println

In short, Scala 3 gets rid of most curly braces and indentation is now important and
significant. This new approach is consistent with languages like Python and Haskell,
and more importantly, it’s cleaner and easier to read. And because programmers spend
about 10 times as much time reading code as we do writing code, readability is huge.
(I won't be surprised if all major programming languages adopt this new style in the
next 10 years.)

Indenting with four spaces

With this new indentation style I prefer to indent my code with four spaces, and that’s
what this book uses. Many Scala programmers use two spaces, but I think four spaces
makes the code easier to read, so that’s why I use it.

I also find that using four spaces makes it more obvious when your functions are getting
too long. When you're indenting your code so much that it starts going oft the right
side of the screen, that’s a great hint that you should probably break your functions
down into smaller functions.

17

18 CHAPTER 6. NOTE I1: SIGNIFICANT INDENTATION SYNTAX

About those curly braces

I need to mention that technically you can still use curly braces if you want, but pretty
much every book and learning resource for Scala 3 — including those created by the
Scala Center and the creator of Scala, Martin Odersky — uses the significant indenta-
tion syntax. So you can still use curly braces, but it’s not the recommended approach.

Note 2: Comments

We'll start writing code in the next lesson, but before doing that I also need to note that
Scala uses the same comment style that’s used by Java and other C-style programming
languages. So you can write comments in either of these three ways:

// a one-line comment

/*
* a multi-line comment.
* more comment stuff here.
*/

/**

* also a multi-line comment

* with more comment stuff here.
*/

You can also create a one-line comment using this style, but we rarely do because you
can just use //:

/* can also do this, but we rarely do */

I'll use comments with many code examples, so I needed to mention this before we
start. For example, one thing I often do is to show the result of a computation after a
// comment, such as this:

val a =1
val b =
val c=a + b // ¢ is 3

19

20

CHAPTER 7. NOTE 2: COMMENTS

Beginning: The Scala REPL

Okay, let’s start writing some code!

Assuming you have Scala-CLI installed on your computer, this lesson shows how to
start something known as a REPL so you can start writing code. Remember that if you
don’t have Scala installed on your computer, you can also use the Scastie! website.

The REPL

The acronym REPL stands for “read/evaluate/print/loop,” and it’s an interactive tool
that lets you write Scala code. I often refer to it as a playground or laboratory, because
it’s a place where you can run experiments on Scala code to make sure it works like you
expect it to. Or if youre not familiar with a language feature or library, the REPL is a
place where you can experiment with it.

If you're using Scala-CLI, start the Scala REPL like this from your operating system
command line:

$ scala-cli repl

Or, if you have the Scala 3 SDK? installed on your system, start the REPL like this:
$ scala

In either case you should see a result that looks like this:

Welcome to Scala 3.1.1
Type in expressions for evaluation. Or try :help.

scala>

'https://scastie.scala-lang.org
*https://www.scala-lang.org/download

21

https://scastie.scala-lang.org
https://www.scala-lang.org/download
https://scastie.scala-lang.org
https://www.scala-lang.org/download

22 CHAPTER 8. BEGINNING: THE SCALA REPL

The scala> prompt indicates that youre now inside an interactive REPL session. In
here you can experiment with writing Scala code:

scala> val x =1
x: Int =1
scala> val y = 2

y: Int =2

scala> x + y
res@: Int = 3

As shown in these examples:

« You generally create new variables in Scala with the val keyword. (You'll see
more on this in the lessons that follow.)

« x and y are the names of two variables that I created.

o After you enter your code and press the [Enter] key, the REPL output shows the
result of your expression, including the variable name you gave it, its data type
(such as Int), and its value.

« If you don't assign a variable name, as in the third example, the REPL creates its
own variable, beginning with the name res@, then resi, etc. You can then use
these variable names just as though you had created them yourself:

scala> res@ * 3
resl: Int =9

This is how the REPL works: type your expressions, and see their results. This is why I
refer to this as a playground, or a place to experiment.
Tab completion

One “trick” in the REPL is that you can type a value or the name of a variable, then
type a decimal, and then press the [Tab] key. The REPL responds by showing all of the
methods that are available on your value, such as when you follow those steps on an
integer like the number 1:

scala> 1.[Tab]

23

= finalize round

#i#t floatValue self

% floor shortValue
& formatted sign

* getClass signum

many more methods listed here ...
What happens here is that 1 is an instance of the Scala type Int, which is an integer,
and all of these methods are available on any integer. For instance, you can continue

to type abs after the decimal to get the absolute value of an integer:

scala> 1l.abs
val resl: Int = 1

Two REPL tips

At this point there are two other things to know about the REPL. First, you reset the
REPL environment with its : reset command:

scala> :reset
Resetting REPL state.

This tells the REPL to forget everything you previously typed in, and to restore itself to
its initial state.

Second, you quit a REPL session with the :quit command, or by typing the

[Control][d] keystroke. Either of these ends your REPL session and returns you to
your operating system command line.

Scastie, an online REPL

Remember that if you haven't installed Scala-CLI or the Scala 3 SDK on your system,
you can also use the Scastie’ website as an online REPL.

Scastie is a tool that’s created and maintained by the creators of Scala 3, and it lets you

*https://scastie.scala-lang.org

https://scastie.scala-lang.org
https://scastie.scala-lang.org

24 CHAPTER 8. BEGINNING: THE SCALA REPL

run Scala code in your browser. You just enter your code, press Run, and see the output.

I've worked at command line prompts for many years, so I prefer the REPL, but Scastie
is also nice. Until we start writing scripts later in the book, either tool is fine.

Start using the REPL

If you haven’t used a REPL environment before, I highly recommend experimenting
with it now. Even experienced Scala developers often have a REPL session open while
they’re coding.

For example, type these expressions into the REPL to see their results:

val a = 2

val b = 4

val c =a *b
val d =c / 2
val e =d -1
d ==
d==7

Those are all examples of how to work with integers, which have the type Int in Scala.
Similarly, this example shows how to create a String and then get its length:

val s = "Hello, world"
s.length

Let the experimenting begin!

Beginning: Printing With printin

The next important thing to know is how to print output to the command line. This
lets you see the output of your calculations, and in Scala we do this with the printlin
function:

println("Hello, world")

In that code, this text is a string — an instance of the Scala String class:
"Hello, world"

We call it a string because it’s a string of characters.

As shown in that code, strings are enclosed in double-quotes. When you run that code
in the REPL, it prints the string Hello, world to the command line.

NOTE: Technically what it really does is print your string, followed by a
newline character.

As with other programming languages you can concatenate two strings together with
the + operator, like this:

println("Hello," + " world")

Both of those println statements print the same output.

NOTE: As shown, you can use the + symbol to concatenate two strings, but
there’s a better way to do this, and you'll see that better approach shortly.

print

As mentioned, println prints your string, followed by a newline character. When you
want to print a string that is not followed by a newline character, use print instead:

25

26 CHAPTER 9. BEGINNING: PRINTING WITH PRINTLN

print("Hello, world")

There’s no easy way for you to confirm yet that what I just wrote is true, but you can
adjust some scripts later to use print instead of println so you can see the difference.

STDOUT and STDERR

Technically, the println function prints a string to “standard output,” which is also
known in the computer world as “STDOUT. In a script or command-line application
this means that the string is printed to the command line. If instead you want to printa
string to standard error (STDERR) — typically for error messages — use this function
instead:

System.err.println("An error message")

In the Unix world you can redirect STDOUT and STDERR to different locations!, so
it’s important to note this distinction.

'https://alvinalexander.com/linux-unix/redirect-stdout-stderr-output-same-file-location

https://alvinalexander.com/linux-unix/redirect-stdout-stderr-output-same-file-location
https://alvinalexander.com/linux-unix/redirect-stdout-stderr-output-same-file-location

Variables: val Fields

In every programming language you create variables, and in Scala you create new vari-
ables with the val keyword. For example, this is how you create a String:

val firstName = "Alvin"
In the REPL you can print the value in the variable firstName like this:

scala> println(firstName)
Alvin

Taking this a little further, given these two variables:

val firstName = "Alvin"
val lastName = "Alexander"

you can use those variables to create a new variable named fullName like this:

val fullName = firstName + + lastName
This is what you see when you print the fullName variable in the REPL:

scala> println(fullName)
Alvin Alexander

Asyou can infer from the examples so far, the general syntax for creating a new variable
looks like this:

val theVariableName = theVariableValue

TIP: As shown in these examples, in Scala the standard is to create variable
names using camel case, like firstName, lastName, etc. (Conversely, we
do not name them first_name and last_name.)

27

28 CHAPTER 10. VARIABLES: VAL FIELDS

You can’t modify val fields

An important thing about val fields is that they are immutable, meaning that they can’t
be changed. So if you create a val variable like this:

val x =1

you can’t update it to a new value later. If you try to give x a new value in the REPL
you’ll see an error message like this:

X =2 // ERROR: Reassignment to val x

A val field in Scala is similar to a final field in Java, and like a const field in JavaScript.

Variable as in algebra

If it seems unusual that a variable can’t vary, it's important to know that a val field is
a “variable” in the algebraic meaning: just like in algebra, once you assign a value to a
variable, it can’t be changed.

This may seem like a limitation, but I ended up learning a ton about programming by
following this one simple rule:

Make every variable in Scala a val field, unless you have a good reason
not to.

When you truly need a variable whose value can be modified (mutated), see the next
lesson.

REPL experiments

I always recommend experimenting with things, and to help you get started, here are
some experiments you can try in the REPL:

1
(a+2) *2

val a
val b

b =7 // this is an intentional error

val ¢ = "hello"

29

30

CHAPTER 10. VARIABLES: VAL FIELDS

Variables: var Fields

When you need to create a variable whose value can change over time, define the field
as a var instead of val:

// assign a value to 'name'
var name = "Reginald Kenneth Dwight"

Because name is a var, you can later change its contents:

// some time later, give 'name' a new value
name = "Elton John"

As mentioned in the previous lesson, if you try to do this with a val field you'll generate
an error, but with var fields this is perfectly legal.

The new value must be the same type

Asyou’ll see in the upcoming lessons, Scala is a strongly-typed language, and one thing
this means is that the variable name must always hold a String value. So this reassign-
ment works:

name = "Fred"

but this fails:

name = 1 // compiler error

As you’'ll soon see, this is because "Fred" is an instance of a class named String, so
name is created as a String variable. The attempt to reassign a 1 to name fails because
1is an instance of a different class named Int.

Keeping track of data types is one way that Scala is a strongly-typed and type-safe

language. Because it’s type-safe, the Scala compiler will catch these errors at compile
time. Or, if you use an IDE, it will catch them as you type.

31

32 CHAPTER 11. VARIABLES: VAR FIELDS

But always start with val

Using val and var are the two ways to create variables in Scala. And now that you've
seen both approaches, it's important to reiterate this point:

1. Always declare variables as val, unless

2. The variable really does need to vary over time, in which case you should create
itasavar

If you follow this one simple rule, you'll find that you really don’t need to use var fields
that often. That makes your code safer because you don’t have to worry about the
variable being unexpectedly changed somewhere else in your code.

TIP: This was something I never event thought about with Java. Maybe
because I didn’t take computer science classes in college it never occurred
to me to specifically declare my intent like this, i.e., to mark 80-90% (or
more) of my Java variables as final. This is just one of the ways Scala
will change the way you think about programming, and help make you a
better programmer.

Variables: Explicitly Declaring The
Data Type

In the previous examples I created string and integer variables like this:

val name = "Fred" // String
val count =1 // Int (an integer)

On the human side this syntax is nice because it’s concise, and any programmer that
has a little experience can tell that the name field contains a string and count contains
an integer.

On the computer side, what happens here is that Scala is smart enough to implicitly
know those data types, i.e., that "Fred" has the type String and 1 has the type Int.

Back in the old days we had to manually declare these things, but there’s no reason to
do this any more.

Expressiveness

This syntax is also great because there are no extra characters to read! In other lan-
guages you have to type something like this to say the same thing:

final int count = 1; // other languages

Instead, I would much rather read this Scala code:

val count =1

Asyou’ll see throughout this book, Scala is a “concise but readable” language, meaning

that there are no wasted characters. There are just enough characters, but no more than
that. Because of this, we call Scala expressive.

Because programmers spend roughly ten times as much time reading code
as we do writing code, an expressive language is a very good thing.

33

34 CHAPTER 12. VARIABLES: EXPLICITLY DECLARING THE DATA TYPE

Explicitly declaring the data type

That being said, there are also times when it will be helpful to explicitly specify the data
type of a variable. In those cases you specify the type after the variable name, like this:

val name: String = "John Doe"

In this specific example there’s no reason to do this, but once I show more data types
in the coming lessons, you'll see situations where this can be helpful. For now, all you
need to know is that when you want to declare the variable’s data type, this is the syntax
you use:

val name: String = "John Doe"
the the the
variable variable variable
name type value

Asanother example, these are the two ways you create an Int (integer) variable in Scala:

val answer = 42 // implicit format
val answer: Int = 42 // explicit format

Asyou can see, there is no need to explicitly declare the variable type in these examples.
Adding the type just makes your code more verbose, and in general, being a verbose
programming language is bad — verbose is harder to read.

When you want to explicitly declare the type when using a var, use the
same syntax.

Strings: Common Methods

Because String is a class, it has methods on it that you can use. This is the way classes
work in OOP languages.

These examples demonstrate some of the common methods that you'll use on a String,
with the results of each method shown after the comment:

val a = "hello, world"

a.length // 12
a.capitalize // "Hello, world"
a.toUpperCase // "HELLO, WORLD"
a.index0f("e") // 1
a.substring(0, 2) // "he"
a.substring(@, 3) // "hel"
a.substring(l, 3) // "el"

A String is an immutable data type, meaning that once it’s created, it can never be
changed. So when you call any of these methods, you always have to assign the result
to a new variable:

val b = a.capitalize // b: "Hello, world"
val ¢ = a.toUpperCase // c: "HELLO, WORLD"

Many more methods

There are actually many more methods available to a String instance. For instance,
when I type a string in the REPL, then add a period, and then press the [Tab] key, the
REPL tells me that there are 248 methods, to be precise:

scala> "yo".
JLine: do you wish to see all 248 possibilities (50 lines)?

But don’t be intimidated by that because you’ll probably only use 10 to 20 methods on

35

36 CHAPTER 13. STRINGS: COMMON METHODS

aregular basis. After that it’s nice to know that all these other methods are there to help
you solve your problems, but the most common 10-20 methods will get you through
most days.

In the lessons that follow, you'll see many of these common methods.

Seq[Char]

It's worth noting that a Scala String can be treated as a Seq[Char] — sequence of
characters — whenever you want to work with it this way. For example, you can access
the elements in a String using the usual sequence syntax (specifying the index inside
parentheses) and doing that returns the element as a Char value:

scala> val s = "hello"
val s: String = hello

scala> s(0)
val res@: Char = h

A for loop is another good example of this:

scala> for ¢ <- s do println(c)
h

O —~ ~ o

Strings: Interpolators

Before we move on to other data types, it will be helpful to demonstrate two more
things about Scala strings:

« String interpolators

« Multiline strings

In this lesson we'll look at string interpolators, and in the next lesson we'll look at
multiline strings.

String interpolators

Scala has the notion of “string interpolators.” For example, given these two variables:

val firstName = "Alvin"
val lastName = "Alexander"

You can print the full name like this:

println(firstName + + lastName) // prints "Alvin Alexander"

That’s how we used to do things 20 years ago in other languages, but with Scala the
preferred way to print that same result is like this:

println(s"$firstName $lastName™) // prints "Alvin Alexander"
Notice that the string is prepended with the character s:

println(s"$firstName $lastName")
A

This is Scala’s way of letting you declare that the following string should be interpolated,
meaning that the string contains variables that should be interpreted before they are
put into the string.

37

38 CHAPTER 14. STRINGS: INTERPOLATORS

I'll explain the reason for the s character in just a moment, but before doing that, it’s
important to note that when you use an expression inside an interpolated string, you
need to use curly braces around the expression:

println(s"Two plus two equals ${2 + 2}")
println(s"Two times two equals ${2 * 2}")

So far I've shown this technique with println statements, but you can use it anywhere
you use a String:

val x = s"Two plus two equals ${2 + 2}"

Other interpolators

Now I can explain the reason for the letter s that precedes the string: s is a method, and
it provides just one way that a string can be interpolated. For instance, there’s another
built-in interpolator named f that lets you format strings just like the C programming
language printf syntax.

For example, I once wrote a little logging library for Scala, and in it I use the f interpo-
lator like this:

bw.write(f"$time | $loglLevel%-5s | $classname | $msg\n")

This pads the second field (logLevel) to be five characters wide and make it
left-justified, so its output looks like this:

04:52:51:541 | INFO | Bar | this is an info message from class Bar
04:52:51:541 | WARN | Bar | this is a warn message from class Bar
04:52:51:541 | DEBUG | Bar | this is an error message from class Bar

In addition to the s and f interpolators, there are other interpolators, and a real key is
that you can write your own interpolators! For example, Scala SQL libraries typically
offer a sql interpolator that looks like this:

val result = sql"select * from $table where $name = $value"

In more complex examples that sql interpolator can work with multiple column names
and multiple values, and its return type can be something other than a String. For

39

instance, depending on the library, it can return a SqlStatement or something similar
(i.e., some fully-formatted and ready to run SQL).

If you're like me, when you first saw that s before the string it may have struck you as

unusual, but now that you see the logic behind it, it turns out to be a terrific benefit.
Library writers often take advantage of this.

More information

If you ever want to write your own string interpolator, see my tutorial, How to create
your own Scala 3 String interpolator’.

'https://alvinalexander.com/scala/scala-3-how- create- custom-string- interpolator-extension-methods

https://alvinalexander.com/scala/scala-3-how-create-custom-string-interpolator-extension-methods
https://alvinalexander.com/scala/scala-3-how-create-custom-string-interpolator-extension-methods
https://alvinalexander.com/scala/scala-3-how-create-custom-string-interpolator-extension-methods

40

CHAPTER 14. STRINGS: INTERPOLATORS

Strings: Multiline Strings

The second extra thing to know about the Scala String type is that you can create
multiline strings by using """ instead of " when creating the string:

[IRIRT]

val address =
Alvin Alexander
123 Main Street
Talkeetna, AK 99676

This works fine, but it's important to note that this creates a multiline string with lead-
ing spaces in it:

Alvin Alexander
123 Main Street
Talkeetna, AK 99676

A technique you can use to remove those leading spaces is to begin each line with the
| symbol, and then add the stripMargin method at the end of the string:

val address =
[Alvin Alexander
123 Main Street
ITalkeetna, AK 99676

.stripMargin

This left-justifies the string, so when you print it, it now looks like this:

Alvin Alexander
123 Main Street
Talkeetna, AK 99676

In that code, stripMargin is a method that’s available on instances of the Scala String

class. It was created for this situation, and by default it expects the | symbol to be used
to begin each line. You can also specify a different character, if you prefer:

41

42 CHAPTER 15. STRINGS: MULTILINE STRINGS

val address = """
#Alvin Alexander
#123 Main Street
#Talkeetna, AK 99676
" stripMargin('#')

In that example I use the # character to begin each line, and then specify that character
by calling stripMargin('#").

Multiline strings and interpolators

Multiline strings are just strings — they are of the String data type — so they can also
be used with interpolators:

val address = s"""
| $name
|$street
I$city, $state $zip
'"".stripMargin

Numeric Data Types

Now that you've seen strings and integers, a next good thing to know is that Scala comes
with the following built-in numeric data types:

* Byte

o Short
o Int

e Long

e Float
o Double

And when you’re working with extremely large numbers you can also use:

e BigInt

e BigDecimal

The numeric data types

As a practical matter, until numbers get very large, most programmers generally use
integers (Int) and double values (Double). Because of that, these are the defaults in
Scala, as you can see in the REPL:

scala> val x = 42
val x: Int 42

scala> val y = 42.0
val y: Double = 42.0

When I create x, Scala is smart enough to implicitly know that x is an Int, and when I
create y, Scala also implicitly infers that it is a Double.

On the rare occasions that you might need to use the other numeric data types, declare

43

44 CHAPTER 16. NUMERIC DATA TYPES

them when you create your variables, like this:

val a: Byte =1
val b: Long = 1
val c: Short =1
val d: Float = 1.0

// you can also declare Int and Double this way,
// though it isn’t necessary:

val e: Int =1

val f: Double = 1.0

Scala 3 also lets you declare numbers using underscore characters to make them more
readable:

val a 1_000 // Int

val b = 1_000_000 // Int

val ¢ = 1.000_000L // Long (created with the 'L' after the number)
val d = 1_234.56 // Double

This is a really useful feature when you're working with large numbers.

BigInt and BigDecimal

When you need to create really, really large numbers, use the BigInt and BigDecimal
data types:

val a = BigInt(1_234_567_890_123_456L)
val b BigDecimal(123_456_789.012)

Use BigInt when you need integer-type numbers that are larger than Long, and
BigDecimal when using very large floating-point numbers. Some developers also use
BigDecimal for working with currency.

Data type sizes

For your reference, this table provides details about Scala’s data types:

Data Type Definition

Boolean true or false

Byte 8-bit signed two’s complement integer
(-2A7 to 2A7-1, inclusive)
-128 to 127

Short 16-bit signed two’s complement integer

(-2A15 to 2A15-1, inclusive)
-32,768 to 32,767

Int 32-bit two’s complement integer
(-2A31 to 2A31-1, inclusive)
-2,147,483,0648 to 2,147,483,647

Long 64-bit two’s complement integer
(-27A63 to 2763-1, inclusive)
-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

Float 32-bit IEEE 754 single-precision float
1.40129846432481707e-45 to 3.40282346638528860e+38
(positive or negative)

Double 64-bit IEEE 754 double-precision float
4.94065645841246544e-324 to 1.79769313486231570e+308
(positive or negative)

Char 16-bit unsigned Unicode character
(0 to 2A16-1, inclusive)
@ to 65,535

String a sequence of Char values

For more details on BigInt and BigDecimal, see their Scaladoc pages:

45

46

CHAPTER 16. NUMERIC DATA TYPES

« BigInt!

« BigDecimal?

'https://www.scala-lang.org/api/current/scala/math/BigInt.html
*https://www.scala-lang.org/api/current/scala/math/BigDecimal.html

https://www.scala-lang.org/api/current/scala/math/BigInt.html
https://www.scala-lang.org/api/current/scala/math/BigDecimal.html
https://www.scala-lang.org/api/current/scala/math/BigInt.html
https://www.scala-lang.org/api/current/scala/math/BigDecimal.html

Constructs: Mathematical Expressions

Now that you've seen Scala’s data types, we can look at mathematical expressions. In
this area, Scala is very much like other programming languages. These examples show
the math operations on Int values:

val a =1

val b = a + 10 // 11

val c = b * 2 // 22

val d = ¢c - 2 // 20

val e =d / 2 // 10

val f = e % 3 // 1 (modulus operator)

As shown, those are the symbols you use for addition, multiplication, subtraction, di-
vision, and the modulus operation.

In that example I use different names for each variable because, as mentioned, val
fields are like algebraic variables and cannot vary. If you prefer to use just one variable
in situations like this, this is a place where you use a var, which can be reassigned to
hold new values:

var a = 1 // note that 'a' is now a 'var'
a=a+ 10 // 11

a=a*2 // 22

a=a-2 // 20

a=a/2 // 10

a=a%3 // 1 (modulus operator)

Scala does not have the ++ and - - operators that you see with some other programming
languages, but when you need to increment or decrement a number you do it with the
+= and -= operators, like this:

var a = 1

a+=1 // a == 2

47

48 CHAPTER 17. CONSTRUCTS: MATHEMATICAL EXPRESSIONS

a-=1 // a ==

While this might seem a little less convenient, a nice thing about this is that the same
approach works with Double values and other numeric data types:

var a = 10.0 // a Double

a+= 1.5 // 11.5
a-=3.0 // 8.5

You'll see this sort of thoughtful consistency throughout the Scala language.

A note about these “operators”

For the sake of simplicity I refer to these mathematical symbols are operators, but
they’re actually methods. That is, symbols like +, -, etc., that look like operators are
really methods on the numeric data type classes. If you're not familiar with OOP and
classes this will make more sense later in this book, but for now, just know that this is
evidence of Scala being a true object-oriented programming language.

Constructs: 1f/then/else

Now that we've covered that background, we can start looking at Scala’s control struc-
tures. We'll start with the Scala 3 if/then syntax.

Given two variables a and b, this is how you write a one-line if statement in Scala 3:
if a == b then println(a)
Similarly, this is how you put multiple lines of code after an if:

if a == b then
println("a equals b, as you can see:")
printlnCa)

When you need an else clause, add it like this:

if a == b then
println("a equals b, as you can see:")
printlnCa)

else
println("a did not equal b")

And when you need “else if” clauses, add them like this:

if a == b then
println("a equals b, as you can see:™)
printlnCa)
else if a == c then
println("a equals c:")
printlnCa)
else if a == d then
println("a equals d:")
printlnCa)
else
println("hmm, something else ...")

49

50 CHAPTER 18. CONSTRUCTS: IF/THEN/ELSE
It can be easier to read if statements with an end if at the end of them, so you can
always add that, if you prefer:

if a == b then
println("a equals b")

else if a == c then
println("a equals c:")
else if a == d then

println("a equals d:")
else

println("hmm, something else ...")
end if

In thislesson I demonstrated 1if statements, meaning that the if/then construct is used
for a side effect, which in this case was printing output. In the next lesson you’ll see how
to use if expressions, which are if/then constructs that return a result.

Expression-Oriented Programming
(EOP)

if statements give us our first opportunity to introduce something known as
Expression-Oriented Programming, or EOP.
Statements vs expressions

One of the terrific things about Scala is that every line of code can be an expression,
and not just a statement.

In programming, a statement is a block of code that does not return a result, and is
used solely for its side effect. For instance, this line of code is a statement because it
does not return a result:

if a == b then println(a)

Lines of code like that are used solely for side effects, and in this case the side effect is
printing to STDOUT.

Conversely, an expression is a block of code that does return a result, and typically has
no side effects. In this lesson I show how to use the i f/then construct as an expression.

Technically it's more accurate to say that the previous if/then example
does not return a useful result. It returns something — a type called Unit,
which is like void in other languages — but we generally don’t care about
it.

Using ‘if’ as an expression

A great thing about Scala is that each of its constructs can be used as an expression.
This includes the if/then construct.

What this means is that the if/then construct returns a result, and you can use that

51

52 CHAPTER 19. EXPRESSION-ORIENTED PROGRAMMING (EOP)

result, such as assigning it to a variable, like this:
val ¢ = if a < b then a else b

For some people that code can be easier to read if it’s on multiple lines, so you can also
write it like this:

val ¢ =
if a < b then a else b

or this:

val ¢ =
if a < b then
a
else
b

All of those examples return the same result, and can be read as, “If a is less then b,
assign the value of a to c. If not, assign the value of b to c”

If you're familiar with the fernary operator syntax in Java' and other lan-
guages, you can see that there is no need for a special syntax in Scala: you
just write a normal if/then expression.

Preview: Using if/then as the body of a method

As a quick peak into the future, as you'll see in future lessons, because the if/then
construct is an expression, you can also use it as the body of a Scala function, like this:

def minCa: Int, b: Int): Int =
if a < b then a else b

That code defines a function named min that returns the minimum value of the two
integer parameters that are passed into it, a and b.

'https://alvinalexander.com/java/edu/pj/pj010018

https://alvinalexander.com/java/edu/pj/pj010018
https://alvinalexander.com/java/edu/pj/pj010018

53

For the purposes of this lesson, the important thing is that if/then is an expression
and returns a value, and because of this it can be used as the entire body of a function.
This is one of the beautiful things about EOP, and you’ll see much more of this in the
lessons that follow.

Finally, even though I haven't introduced functions yet, if you have experience with
other programming languages, I suspect that you may understand how that function
works. You can see it in action in these examples:

println(min(1, 2)) // prints "1"

val x = min(1l, 1.000) // x is assigned the value 1

As you’'ll see throughout this book, EOP is another feature that makes Scala concise
and readable, i.e., expressive.

54

CHAPTER 19. EXPRESSION-ORIENTED PROGRAMMING (EOP)

Tuples

Before we get into the following lessons on sequence classes, it will help if we take a
first look at tuples.

A tuple is a heterogeneous collection of elements, which means that a tuple can contain
different types of elements. For instance, this is a tuple that contains an Int and a
String:

val t = (1, "yo")
Similarly, this is a tuple that contains an Int, String, Char, and Double:

val t = (1, "1", '1", 1.1)

I didn’t mention it previously, but you create a Char (character) by putting
it inside single-quotes.

As shown, you create a tuple by putting parentheses around the elements you want in-
side it. Like the sequence classes you're about to see, a tuple can hold as many elements
as you need, though I typically use it for small collections like these.

A tuple is also an immutable data structure, meaning that its elements can’t be changed
and its size can’'t be changed.

Accessing tuple elements

A tuple works like a sequence in that the elements are stored in the order you place
them in. In Scala 3 you access tuple elements by their index number. For instance,
given this tuple:

val t = (42, "fish")

you access its elements as (@) and t(1):

55

56 CHAPTER 20. TUPLES

t(0) // 42
t(D // "fish"

You can also determine how many elements are in a tuple like this:
t.size // 2

We won't be using this functionality just yet, but they are good points to know.

The importance of tuples

In terms of these lessons, the important part about tuples is that we need to see them
now because they’re used in the following lessons on sequences.

In the longer term, tuples are important because they can be used in other ways!

Collections: The List Class

A sequence in Scala is an ordered list of values, meaning that the values are returned in
the order you put them in. Scala has a few different types of sequences that you can use
for different needs, including List, Vector, and ArrayBuffer. But for our purposes, a
good one to start with is List.

Scala’s List class is immutable, meaning that its elements can’t be changed and the list
can’t be resized. It's implemented as a linked-list, so it’s good for small lists, but if you
want to have fast access to its one-millionth or one-billionth element, you’ll want to
use a Vector instead. (I discuss this more as we go along.)

NOTE: For reasons of efficiency and performance, the different sequence
classes store your elements in different ways, but the important part is that
they are returned to you in the proper order.

Using List

These examples show how to create new lists of different types:
val ints = List(1, 2, 3)

val doubles = List(1.1, 2.2, 3.3)

val names = List("Aleka", "Christina", "Alvin")

As shown, you usually don’t need to explicitly declare the type of the List, but when
you want or need to do that, you can:

val ints: List[Int] List(1, 2, 3)
val doubles: List[Double] List(1l.1, 2.2, 3.3)
val names: List[String] = List("Aleka", "Christina", "Alvin™)

In that code, List[Int] can be read as “A list of integers,” List[Double] can be read
as “A list of double values,” and so on.

Typically you'll only explicitly show the data type when it isn't 100% obvious what’s
contained in the List. That won’t be a big problem now, but when your code gets

57

58 CHAPTER 21. COLLECTIONS: THE LIST CLASS

more complicated there can be situations where you’ll want to explicitly declare the
type like this.

Accessing List elements

When you need to access the elements stored in a List, you access them by their index
number, like this:

1ist(@) // the first element
list(1) // the second element

Like most other programming languages, Scala is 0-based when it comes to working
with indexes on sequences, so the first element is referred to as “element 0,” the second
is “element 1, etc. Here’s a complete example using a List[String] — a list of strings
— that shows how this works:

val list = List("a", "b", "c")
println(list(@)) // prints a
println(list(1)) // prints b

println(list(2)) // prints c

Asyou’ll see throughout this book, using parentheses to access elements in a collection
is used consistently in Scala.

Lists are immutable

As mentioned, the List class is an immutable data structure, meaning that you can't
add, update, or remove elements, and you can't resize an existing list. For example,
given this List[Int]:

val ints = List(1, 2, 3)

these attempts to add or update elements will fail to compile:

ints += 4 // error
ints(@) = 10 // error

59
The next lesson begins to show the correct ways to update lists.

Discussion

If the List class being immutable seems like a big restriction, fear not! There are a few
things that will ease your concerns.

First, if you're only interested in OOP, Scala has other types of sequence classes that are
mutable, meaning that you can modify their elements. I'll show those shortly.

Second, if you have at least a mild interest in FP, you’ll find that it’s surprising how
often you don’t need a mutable sequence class. Because of this, I often reach for the
List class first, and then change it to a mutable sequence if I really need one.

Third, as I mentioned earlier, another approach is to create a as a var variable, in which
case you can then assign the new result back to a:

var a = List(1, 2, 3)
a=a ++ List(4, 5) // a: List(1, 2, 3, 4, 5)

Some OOP developers I have talked to really like this approach of using (a) an im-
mutable sequence with (b) a mutable variable.

A performance note

When you have a small sequence that contains just a few elements, it doesn’t matter too
much what sequence class you use. But when you have large lists, you may want to use
aVector or ArrayBuffer instead of a List. The process for choosing a sequence type is
explained in the lessons that follow, but for now just note that Vector is immutable just
like List, but it works much faster with large lists when you need to access an element
directly, like 11st(10_000_000). And ArrayBuffer is like a mutable version of Vector,
so you'll use it when you have a sequence that you'll constantly be modifying.

Those things being said, I'll continue to use List in the lessons that follow because it’s
a nice class for small, immutable sequences.

60

CHAPTER 21. COLLECTIONS: THE LIST CLASS

Collections: Updating List Elements

Because List is immutable, the way you add, remove, and update elements is to (a)
use its add/update/delete methods while (b) assigning the result to a new variable. The
following examples begin to demonstrate this process. More examples are then shown
in the Sequences: More Methods lesson that follows.

Appending and prepending elements

First, to append one element to a List, use its : + method, and to add multiple elements,
use its ++ method:

val a = List(l, 2, 3)
val b =a :+ 4 // add one element
val ¢ = b ++ List(5, 6) // add multiple elements

TIP: The :+ and ++ methods are used with both List and Vector.

Because List is a linked-list, the preferred way to work with it is to prepend elements
to it:

val a = List(2, 3) // List(2,3)
val b =1 :: a // List(1, 2, 3)
val c =0 :: b // List(0, 1, 2, 3)

With the List class, prepending is actually a faster operation than appending, but when
your lists are small, this isn't a huge concern.

Removing elements
There are many ways to remove elements from a List, and I cover those in the Se-

quences: More Methods lesson. As a quick preview of that lesson, a common approach
is to use the List class filter method, like this:

61

62 CHAPTER 22. COLLECTIONS: UPDATING LIST ELEMENTS

val a
val b

List(1, 2, 3, 4, 5)
a.filter(_ > 3) // b: List(4, 5)

I don't want to duplicate that lesson too much, but for this lesson I just want to give
you a preview of one way to “remove” elements from a List (remembering to assign
the result to a new List).

Updating elements

There are also many ways to update a List, so I'll just share one approach here that
truly lets you update an element according to its position in the list:

val a = List(1, 2, 3)
val b = a.updated(0, 100) // b: List(l00, 2, 3)
val ¢ = b.updated(1l, 200) // c: List(100, 200, 3)

The first call to the updated method updates the value at index @ in the list, giving it a
new value of 100. The second call then updates the value at index 1 in the list, giving
it a new value of 200.

For more examples of the methods you can use, see the Sequences: More Methodslesson.
Or, if you're really curious and want to see many more examples, see my blog post, 100+
Scala List class examples!.

'https://alvinalexander.com/scala/list-class- methods-examples-syntax/

https://alvinalexander.com/scala/list-class-methods-examples-syntax/
https://alvinalexander.com/scala/list-class-methods-examples-syntax/
https://alvinalexander.com/scala/list-class-methods-examples-syntax/

Collections: Other Sequence Classes

Before we get into more lessons on how to use sequence classes, it’s important for me
to be clear about the List class and other sequence classes in Scala.

As mentioned, List is an immutable, linked-list, sequence class:

o Immutable means that the elements in a List cannot be changed, and the size of
a List cannot be changed.

o Linked-list means that one element in a list is daisy-chained to the next element
in the list. If you took programming classes in college, you probably wrote a
linked-list in one of your classes. (This type of sequence is also known as a linear
sequence.)

« Sequence means that the class contains an ordered sequence of elements. The
elements are always returned to you in the order that you put them into the
sequence.

Scala has other sequence classes

At this point there are two important things to know about Scala’s sequence classes:

o Scala has other sequence classes, and each is intended for a specific purpose

« Because Scala is an object-oriented language, the sequence classes are created in
a specific hierarchy

Of the other sequence classes, the most important ones to know are:

« Vector is an immutable, indexed sequence

o ArrayBuffer is a mutable, indexed sequence

We'll look at those in a few moments, but first we need to look at some other things.

63

64 CHAPTER 23. COLLECTIONS: OTHER SEQUENCE CLASSES

i |

[LinearSeq IndexedSeq]

Figure 23.1: A subset of Scala’s immutable sequence classes

Indexed

Indexed means that any element in a sequence can be accessed very rapidly. For in-
stance, to access the one-millionth element in a List, you have to start at the first ele-
ment in the list and follow the linked-list daisy-chain until you get to the one-millionth
element, and that’s a slow process, requiring one million operations. But with a Vector
or ArrayBuffer — because they are created with a tree-like data structure — accessing
the one-millionth element requires just a few hops.

Vector and ArrayBuffer are much faster for this purpose, and their structure also
makes other operations, such as appending elements, much faster than List. To be
clear, I only use List for small sequences.

The sequence class hierarchy

Because Scala is an OOP language, the List, Vector, and ArrayBuffer classes extend
other data types. For example, this figure shows part of the Scala class hierarchy for
immutable sequence classes:

As shown, both List and Vector extend the base class Seq. This gives them many
common methods that are implemented in Seq (and other classes above Seq that I don’t
show.) But after Seq they diverge, and List extends LinearSeq, and Vector extends
IndexedSeg, which gives them the performance attributes I just described.

65

Choosing a sequence

Because of these attributes, you generally use these sequence classes at the following
times:

« Use List or Vector when you want an immutable sequence

o Prefer Vector over List when (a) you need to randomly access elements in the
sequence, (b) the size gets large, or (c) when you’ll be constantly appending ele-
ments to the sequence

 Use ArrayBuffer when you want a mutable sequence class (for instance, when
you know that you will constantly add, remove, and update elements)

Also because of these attributes:

« Vector and ArrayBuffer are typically your “go to” classes

o List and Vector are used in an FP style, and in OOP when you know you're
sequence won't be mutated

o ArrayBuffer is used in an OOP style

Performance considerations

When you get into advanced use cases, the Scaladoc for these classes can also help
you with additional information, such as performance characteristics. For instance,
the ArrayBuffer Scaladoc page' states, “Append, update and random access take con-
stant time (amortized time). Prepends and removes are linear in the buffer size” The
constant time portion of the description is one reason that ArrayBuf fer is the preferred
mutable sequence.

Similarly, the Vector Scaladoc page” states, “It provides random access and updates
in 0Clog n) time, as well as very fast append/prepend/tail/init (amortized 0(1), worst
case 0Clog n)). Because vectors strike a good balance between fast random selections
and fast random functional updates, they are currently the default implementation of
immutable indexed sequences”

'https://www.scala-lang.org/api/current/scala/collection/mutable/ ArrayBuffer.html
*https://www.scala-lang.org/api/current/scala/collection/immutable/Vector.html

https://www.scala-lang.org/api/current/scala/collection/mutable/ArrayBuffer.html
https://www.scala-lang.org/api/current/scala/collection/immutable/Vector.html
https://www.scala-lang.org/api/current/scala/collection/mutable/ArrayBuffer.html
https://www.scala-lang.org/api/current/scala/collection/immutable/Vector.html

66 CHAPTER 23. COLLECTIONS: OTHER SEQUENCE CLASSES

I also include performance details in the Scala Cookbook®.

List

All of that being said, the List class is a nice class to use when you're working with
small sequences. I tend to use it a lot, and it’s used a lot in the Scala library code as
well.

The Scala library creators once ran a test where they replaced every in-
stance of List in the libraries with Vector, and they actually saw a slight
slowdown in the code, likely because most of their sequences are small,
and List is more efficient with small sequences than Vector.

Therefore, T'll show the List class in the following lessons, but remember that you
can also use the Vector classes in these examples, because both classes are immutable
sequences.

*https://amzn.to/3dulpMR

https://amzn.to/3du1pMR
https://amzn.to/3du1pMR

Constructs: for Loops

Now that we've seen the List class we can begin looking at for loops, which let us
iterate over elements in a sequence. For example, given this list:

val ints = List(1, 2, 3)

This REPL example shows how to iterate over every element in the list to print them
with the println function:

scala> for i <- ints do println(i)
1
2
3

You can infer from that example that the general syntax of a for loop is:
for element <- listOfElements do somethingToDoWith(element)
When the “something to do” part of your code requires multiple lines, use this syntax:
for
i <- ints
do
// this doesn’t really require multiple lines,
// but imagine that it does
val j =i * 10
println(j)
Here’s another example that shows another way the for/do loop can be formatted:

val names = List("adam", "alex", "bob™)

// again imagine that this requires multiple lines:
for name <- names do
val capName = name.capitalize

67

68 CHAPTER 24. CONSTRUCTS: FOR LOOPS

printlnCcapName)
Either of these indentation styles will work, and that example results in this output:

Adam
Alex
Bob

I keep noting that you should imagine that this code requires multiple lines, and that’s
because it really doesn't; it can all be on one line, like this:

for name <- names do println(name.capitalize)

Personally, I often find myself writing multiple lines of code, and then realizing, “Wait,
I can condense this, and this, and then that,” and I end up with just one or two lines of
code. Having concise — but still readable! — code often happens in Scala.

Remembering EOP

Earlier I mentioned EOP — Expression-Oriented Programming. Remember that in
EOP we program using expressions and not statements.

However, for loops are a construct that don't really return anything. Because of this
they are effectively statements, and are only used for their side effects. This is something
I never thought about in Java and other OOP languages, but once you're exposed to
EOP, you realize that something now feels different about for loops. It starts to occur
to you, “Hmm, I see now that this is a statement, not an expression.” It’s not that state-
ments are necessarily bad — you certainly need to be able to print — but they begin to
stand out to you.

Two notes

As a first note, I mentioned earlier that technically the for loop shown does have a
return type. That type is named Unit, and it’slike void or Void in some other languages.
This just means that the return type is empty and essentially useless. This leads to
another important point: every programming statement will have a Unit return type,
because statements are always used for their side effects, and have no useful return

type.

69

The println function is a great example of this. We know that it’s only used for its side
effect of printing to STDOUT, and this is its actual type signature:

def println(x: Any): Unit = ?77?

Even though I haven't discussed functions yet, if you've worked with other program-
ming languages you can probably tell that this is a function that takes a parameter
named x whose type is Any, and it returns the Unit data type. So again, when you see
that some block of code returns Unit, your first thought should be, “There’s a side effect
here”

The second note is to remember that wherever I demonstrate the List class, you can
generally also use the Vector class, because both are immutable.

70

CHAPTER 24. CONSTRUCTS: FOR LOOPS

Constructs: for Expressions

As you get better and better at using Scala you’ll find that you won’t use for loops very
often, but you will start to use a similar construct: for expressions.

A for expression is similar to a for loop, except that it really is an expression, and
returns something of value. You create a for expression by replacing the do keyword
with the yield keyword. For example, given this list of integers:

val xs = List(1, 2, 3)

you can create a new list of integers from that list, where each element in the new list
is twice the value of the elements in xs like this:

val ys = for x <- xs yield x * 2

If you place that code in the Scala REPL, you’ll see that ys has the type List[Int], and
its contents are List(2, 4, 6):

scala> val ys = for x <- xs yield x * 2
val ys: List[Int] = List(2, 4, 6)

You can think of the for/yield expression working like this:

“For every element in the list xs (pronounced “exes”), double each ele-
ment, and then put that new element in a temporary new list. When you
have finished doubling every element, return the entire new list.”

Here’s another example of a for expression, this time using a list of strings:
val names = Seq("luke", "leia™)
val capNames =

for
name <- names

71

72 CHAPTER 25. CONSTRUCTS: FOR EXPRESSIONS

yield
// put as many lines of code as are necessary
// for your algorithm
name.capitalize

After that code runs, capNames contains List("Luke", "Leia"). This is because the
for/yield expression works like this:

o Get the first element from the list ("Luke")
o Capitalize it ("Luke")

» Add that to the new list

o Get the next element ("leia")

o Capitalize it ("Leia")

+ Add that to the new list

o All elements have been processed, so return the new list, and assign its value to
capNames

It really is an expression

I try not to repeat myself too many times, but since were just getting into this topic:
To be clear, the for/yield combination truly is an expression; it returns a value, the
value calculated after the yield keyword. That’s why this is called a “for expression.”
In other programming languages you may also see this concept referred to as a “for
comprehension.”

Transforming the data type

Before we move on, here’s another example of a for expression:

val xs = List("a", "bb", "ccc")
val ys = for x <- xs yield x.length // ys: List[Int] = List(1, 2, 3)

As shown in the comment, after the code is run, ys has those contents. So a cool thing
about a for expression is that you can use it to create a new type of collection: Here I
start with xs as a List[String] and convert that into ys, which is a List[Int].

	About This Early Release
	About The Author
	Welcome to Scala 3!
	Why Learn Scala 3?
	Your Setup For This Book
	Note 1: Significant Indentation Syntax
	Note 2: Comments
	Beginning: The Scala REPL
	Beginning: Printing With println
	Variables: val Fields
	Variables: var Fields
	Variables: Explicitly Declaring The Data Type
	Strings: Common Methods
	Strings: Interpolators
	Strings: Multiline Strings
	Numeric Data Types
	Constructs: Mathematical Expressions
	Constructs: if/then/else
	Expression-Oriented Programming (EOP)
	Tuples
	Collections: The List Class
	Collections: Updating List Elements
	Collections: Other Sequence Classes
	Constructs: for Loops
	Constructs: for Expressions

