
	
 1

Play Framework Recipes

Copyright 2013 Alvin J. Alexander

All rights reserved. No part of this book may be reproduced without prior written
permission from the author.

Disclaimer: This book is presented solely for educational and entertainment
purposes. The author and publisher are not offering it as legal, accounting, or
other professional services advice. While best efforts have been used in preparing
this book, the author and publisher make no representations or warranties of any
kind and assume no liabilities of any kind with respect to the accuracy or
completeness of the contents and specifically disclaim any implied warranties of
merchantability or fitness of use for a particular purpose. Neither the author nor
the publisher shall be held liable or responsible to any person or entity with
respect to any loss or incidental or consequential damages caused, or alleged to
have been caused, directly or indirectly, by the information or programs contained
herein. No warranty may be created or extended by sales representatives or
written sales materials. Every company is different and the advice and strategies
contained herein may not be suitable for your situation. You should seek the
services of a competent professional before beginning any improvement program.

Second edition, published August 12, 2013 (the “0.2” release)
First edition, published August 1, 2013 (the “0.1” release)

	
 2

Table of Contents

..Preface	
 4

..Introduction	
 5

...1) Creating a “Hello, World” Project	
 6

........................2) Adding a Route, Model, and Controller Method to a Play Application	
 16

...3) Using Multiple Template Wrappers	
 20

...4) Creating Reusable Code Blocks in Templates	
 21

...5) Calling Scala Functions from Templates	
 24

...6) Creating a Widget and Including it in Pages	
 26

...7) Using CoffeeScript and LESS	
 28

...8) Creating a Simple Form	
 30

...9) Validating a Form	
 40

..10) Displaying and Validating Common Play Form Elements	
 48

..11) Selecting from a Database with Anorm	
 55

...12) Inserting Data into a Database with Anorm	
 61

...13) Deleting Records in a Database Table with Anorm	
 67

..14) Updating Records in a Database Table with Anorm	
 68

..15) Testing Queries Outside of Play	
 69

..16) Deploying a Play Framework Project	
 72

..17) Handling 404 and 500 Errors	
 76

...Play Commands	
 78

...JSON Reference	
 80

..About the Author	
 84

	
 3

Preface

A funny thing happened on the way to writing the Scala Cookbook for O’Reilly: I
wrote too much. Way too much.
I didn’t know the book would significantly expand when it was converted from a
series of Word documents to the final PDF format, and as a result, I ended up
writing over 850 pages, and they could only print about 700 pages. So we had to
do something.
Because I felt like the Scala Cookbook had to contain chapters that are “core” to
the language, one of the things I decided to do was to pull the Play Framework
chapter out of the book. I briefly thought about using it as the basis of a new “Play
Framework Cookbook,” but instead, I decided to make it freely available.
In short order this booklet will be available in a variety of forms. I’d like it to be
freely available as a PDF, an Amazon Kindle eBook, and in other forms, such as
HTML on my website (alvinalexander.com).
If you find any errors in this booklet, please let me know. You can reach me
through the contact form on my website.
Here then are my Play Framework Recipes. I hope you enjoy them, and more
importantly, I hope they’re helpful.
All the best,
Alvin Alexander
http://alvinalexander.com

P.S. – I should add that this booklet is now only loosely related to the Scala
Cookbook. It was created during the process of writing that book, but it now
contains new content that hasn’t been vetted by the O’Reilly folks, so all of the
errors are my own, that sort of thing.

	
 4

http://shop.oreilly.com/product/0636920026914.do
http://shop.oreilly.com/product/0636920026914.do
http://alvinalexander.com
http://alvinalexander.com
http://alvinalexander.com/contact
http://alvinalexander.com/contact
http://alvinalexander.com
http://alvinalexander.com

Introduction

There are several good frameworks for developing web applications in Scala,
including the Lift Framework and Play Framework (Play). Portions of the Lift
framework are demonstrated in Chapter 15 of the Scala Cookbook, and this
chapter provides a collection of recipes for Play.
If you’ve used other web frameworks like Ruby on Rails or CakePHP, the Play
approach will seem familiar. Like those frameworks, Play uses “convention over
configuration” as much as possible, and even the directory layout is similar.
Play has many great features, including support for popular web development
technologies like CoffeeScript and LESS. A really terrific feature is that Play uses
templates, and those templates compile to normal Scala functions. As a result, it’s
easy to accomplish many tasks that are difficult in other frameworks, including
creating one or more “master” templates to provide a common look and feel
across a website, and the ability to easily include one template into another as a
reusable widget.
Off the shelf, Play includes a database library named Anorm, which stands for
“Anorm is Not an Object Relational Mapper.” As its name implies, Anorm lets
you write your data access objects (DAOs) using plain SQL. It’s straightforward
to use, and provides a DSL for its tasks. However, if Anorm isn’t your cup of tea,
Play makes it easy to plug in other database access technologies, such as
Hibernate, JPA, and others.
Finally, you can deploy your Play application in several different ways, including
the dist method, which lets you package your applications and all dependencies
into a ZIP file, and only requires a JVM on the production server. This lets you
easily deploy Play applications to application server environments from Amazon,
Google, Heroku, and many others.

Note: This booklet covers the Play Framework Version 2.1.

	
 5

http://liftweb.net/
http://liftweb.net/
http://www.playframework.org/
http://www.playframework.org/
http://coffeescript.org/
http://coffeescript.org/
http://lesscss.org/
http://lesscss.org/

1) Creating a “Hello, World” Project
Problem
You want to create a new Play project, and understand the basics of the Play
architecture.

Solution
Download and install the Play Framework distribution per the instructions on the
Play website. Once it’s installed, move to a directory where you normally create
your projects, and then issue the play new command followed by your project
name to create a new project. When prompted, choose the option to create a Scala
application.
For instance, I keep my projects in a directory named /Users/Al/Projects, so I
follow these steps to create a new project named Hello:
$ cd /Users/Al/Projects

$ play new Hello

 _ _
 _ __ | | __ _ _ _| |
| '_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

play! 2.1.1

The new application will be created in /Users/Al/Projects/Hello

What is the application name? [Hello]
> [Enter]

Which template do you want to use for this new application?

 1 - Create a simple Scala application
 2 - Create a simple Java application

> 1
OK, application Hello is created.

Have fun!

	
 6

With the project directory created, cd into that directory, and then start the Play
command-line tool:
$ cd Hello

$ play

[info] Loading global plugins from /Users/Al/.sbt/plugins
[info] Updating {file:/Users/Al/.sbt/plugins/}default-6315be...
[info] Resolving org.scala-sbt#precompiled-2_10_0;0.12.2 ...
[info] downloading
[info] Done updating.
[info] Loading project definition from Hello/project
[info] Set current project to Hello
 _ _
 _ __ | | __ _ _ _| |
| '_ \| |/ _' | || |_|
| __/|_|____|__ (_)
|_| |__/

play! 2.1.1

> Type "help play" or "license" for more information.
> Type "exit" or use Ctrl+D to leave this console.

[Hello] $ _

This is the Play command-line prompt. From here you can start the Play server.
Just type run to start the server on port 9000, but if that port is already taken by
another application (such as Eclipse), specify a different port for it to run on:
[Hello] $ run 8080

--- (Running the application from SBT, auto-reloading is enabled) ---

[info] play - Listening for HTTP on /0.0.0.0:8080

(Server started, use Ctrl+D to stop and go back to the console...)

When you see the “Server started” message, the Play server is running, and you
can now access your application from a browser. Because I started the server on
port 8080, I access the http://localhost:8080/ URL in my browser, and after a few
moments I see the result shown in Figure 1.

	
 7

Figure 1. The Play “Welcome” message

There was probably a slight pause before this content was displayed in your
browser. Looking back at the Play console, you’ll see why. Play automatically
compiled the source code for your application when you accessed that URL:
(Server started, use Ctrl+D to stop and go back to the console...)

[info] Compiling 5 Scala sources and 1 Java source to
 target/scala-2.10/classes...
[info] play - Application started (Dev)

Congratulations, your first Play application is now up and running.
If you prefer to start Play on port 8080 from your operating system
command line (rather than the Play shell), use this command:
$ play "run 8080"

If you want to run in debug mode using port 8080, use this
command:
$ play debug "run 8080"

This starts a JPDA debug port you can connect to with a Java
debugger.

	
 8

Discussion
A Play application consists of the following components:
• Controllers that are placed in an app/controllers folder.
• Templates that are placed in an app/views folder.
• Models in an app/models folder. (This folder is not automatically created.)
• A mapping of application URIs to controller actions in the conf/routes file.

Other important files include:
• Application configuration information in the conf/application.conf file.
• Database scripts in the conf/evolutions folder. (Optional.)
• Frontend, design assets in the public/images, public/javascripts, and public/

stylesheets folders.

If you’re an Eclipse user, you can load the Hello project into Eclipse. If your
Hello application is still running, press Ctrl-D at the Play command line. This
brings you back to Play’s [Hello] prompt:
[Hello] $

Type eclipse to have Play generate the .project and .classpath files for Eclipse:
[Hello] $ eclipse
[info] About to create Eclipse project files for your project(s).
[info] Successfully created Eclipse project files for project(s):
[info] Hello

Now import your project into Eclipse. From the Eclipse menu, select File →
Import... → Existing Projects Into Workplace, click Next, and then navigate your
filesystem and choose the Hello project you just created. When you open the
project folders, your view should look like Figure 2.

	
 9

Figure 2. The directory structure of a new Play project, shown in Eclipse

To examine the files in the project, first look at the conf/routes file. In Play 2.1.1,
this file contains the following default contents:
Routes
This file defines all application routes
(Higher priority routes first)
~~~~

Home page
GET / controllers.Application.index

Map static resources from the /public folder to the /assets URL
GET /assets/*file controllers.Assets.at(path="/public", file)

	
 10

For the purposes of understanding how the welcome page was displayed, this is
the important line in that file:
GET / controllers.Application.index

This line can be read as, “When the HTTP GET method is called on the / URI,
call the index method defined in the Application object in the controllers
package.” If you’ve used other frameworks like Ruby on Rails and CakePHP,
you’ve seen this sort of thing before. It binds a specific HTTP method (such as
GET or POST) and a URI to a method in an object.
Next, open the app/controllers/Application.scala file and look at the index
method:
package controllers

import play.api._
import play.api.mvc._

object Application extends Controller {

 def index = Action {
 Ok(views.html.index("Your new application is ready."))
 }

}

This is a normal Scala source code file, with one method named index. This
method implements a Play Action by calling a method named Ok, and passing
in the content shown. The code views.html.index is the Play way of
referring to the views/index.scala.html template file. A terrific thing about the Play
architecture is that Play templates are compiled to Scala functions, so what you’re
actually seeing in this code is a normal function call:
views.html.index("Your new application is ready.")

This code essentially calls a function named index, and passes it the string,
“Your new application is ready.”
Knowing that a template compiles to a normal Scala function, open the app/views/
index.scala.html template file. You’ll see the following contents:
@(message: String)

@main("Welcome to Play 2.1") {

 @play20.welcome(message)

}

Notice the first line of code:
@(message: String)

	
 11

If you think of the template as a function, this is the parameter list of the function.
This declares that the function takes one parameter, a String with the variable
name message.
The @ symbol in this file is a special character in a Play template file. It indicates
that what follows is a Scala expression. For instance, in the line of code shown,
the @ character precedes the function parameter list. In the third line of code, the @
character precedes a call to a function named main. Notice in that line of code,
the string “Welcome to Play 2.1” is passed to the main method.

As you might have guessed, though main looks like a function, it’s also a
template file. When the code calls main, it actually invokes the app/views/
main.scala.html template. Here’s the source code for main.scala.html:
@(title: String)(content: Html)

<!DOCTYPE html>

<html>
 <head>
 <title>@title</title>
 <link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/main.css")">
 <link rel="shortcut icon" type="image/png"
 href="@routes.Assets.at("images/favicon.png")">
 <script src="@routes.Assets.at("javascripts/jquery-1.9.0.min.js")"
 type="text/javascript"></script>
 </head>
 <body>
 @content
 </body>
</html>

This file is the default “wrapper” template file for the project. If every other
template file calls main in the same way the index.scala.html file calls main, you
can be assured that those templates will be wrapped with this same HTML, and as
a result, all of your pages will have the same look and feel.
Notice the first line of this file:
@(title: String)(content: Html)

This template file (again, a function) takes two parameter lists. The first parameter
list contains a variable named title of type String. It’s used in the template
between the <title> tags.

	
 12

The variable in the second parameter list is named content, and is of type
Html. Near the end of this file you’ll see that this variable is emitted inside of
<body> tags like this:
<body>
 @content
</body>

When you access the / URI in your browser, this is where the content from the
index.scala.html file is emitted. Looking back at the main method call in the
index.scala.html file, you can see how this works:
@main("Welcome to Play 2.1") {

 @play20.welcome(message)

}

The string “Welcome to Play 2.1” is passed as the first parameter to the main
function (where it becomes the title parameter). The rest of the template is
created as a block inside curly braces, and that block is passed in the second
parameter list to the main function. Because the main function is actually the
template main.scala.html, this block becomes the variable named content in
that template, and the block is emitted inside the <body> tags in that file.

The following line of code in the index.scala.html file is what generates all the
content you see in the browser:
@play20.welcome(message)

You can delete this code and replace it with something else, for instance, the usual
“Hello, world” greeting. While you’re at it, add a comment to the code using
Play’s @* ... *@ comment syntax:
@(message: String)

@* this is a comment *@
@* ignoring the 'message' that's passed in *@
@main("Welcome to Play 2.1") {

 <h1>Hello, world</h1>

}

Save this file, then go back to the Play console and restart the server, if necessary:
[Hello] $ run 8080

Now refresh your browser, and after a few moments you’ll see the “Hello, world”
message. Congratulations, you’ve now seen all the basics of the Play Framework.

	
 13

The Play console
Under the covers, the Play console is a normal SBT console, so you can run the
usual SBT commands, such as doc, to generate Scaladoc:
[Stocks] $ doc

If you think there’s a problem with SBT (the cache is corrupted), use the clean
command:
[Stocks] $ clean

You can also run the Play clean-all command from your operating system
command line:
$ play clean-all
[info] Done!

The Play console command opens a REPL session with your code loaded, so
you can test it. To demonstrate this, the examples in this chapter use a Stock
class in the models package, and you can create an instance of a Stock from the
console:
[Stocks] $ console
[info] Updating
more output here ...
[info] Compiling 12 Scala sources and 1 Java source to
 target/scala-2.10/classes...
[info] Starting scala interpreter...
[info]
Welcome to Scala version 2.10.0.

scala> import models._
import models._

scala> val s = Stock(0, "NFLX", Some("Netflix"))
s: models.Stock = Stock(0,NFLX,Some(Netflix))

You can access other project classes and objects in the same way.
When you’re finished, press Ctrl-D to exit the scala> prompt and return to the
Play console.

As shown in the examples in this chapter, use the run command to
run your application in development mode. However, don’t use
this command to run an application in production. The Play
documentation states that for each request that’s made when using
the run command, a complete check is handled by
SBT―definitely not something you want in production. Recipe 16
shows how to deploy a Play Framework project to production.

	
 14

Summary
Here’s a quick summary of what was demonstrated.
A Play application consists of the following components:
• The conf/routes file maps URIs and HTTP methods to controller methods.
• Controller classes are placed in the app/controllers folder.
• Controllers have methods, like the index method. These methods typically

perform some business logic and then display a template, passing data to the
template as needed.

• Templates are placed in the app/views folder.
• Template files are compiled to functions, and can be called like functions.
• An application will usually have one or more master or “wrapper” template

files, like the main.scala.html template that’s automatically created for you.
Other template files call these master template files so your application will
have a consistent look and feel.

• Although this example didn’t show it, model files (like a Person, User,
Order, etc.) are placed in the app/models folder.

Other important files include:
• Application configuration information in the conf/application.conf file. This

includes information on how to access a database.
• Database scripts in the conf/evolutions folder. (Optional.)
• Frontend, design assets in the public/images, public/javascripts, and public/

stylesheets folders. The main.scala.html demonstrates the syntax for referring
to these files.

See Also
• The Play Console page has more information on console commands: http://

www.playframework.com/documentation/2.1.1/PlayConsole
• Starting your application in production mode: http://

www.playframework.com/documentation/2.1.1/Production

	
 15

http://www.playframework.com/documentation/2.1.1/PlayConsole
http://www.playframework.com/documentation/2.1.1/PlayConsole
http://www.playframework.com/documentation/2.1.1/PlayConsole
http://www.playframework.com/documentation/2.1.1/PlayConsole
http://www.playframework.com/documentation/2.1.1/Production
http://www.playframework.com/documentation/2.1.1/Production
http://www.playframework.com/documentation/2.1.1/Production
http://www.playframework.com/documentation/2.1.1/Production

2) Adding a Route, Model, and Controller Method
to a Play Application
Problem
You need to see how to add a new route, controller method, and model to create
new content at a new URI in a Play application.

Solution
Follow these steps to create new content at a new URI:
1. Create a new route in the conf/routes file.

2. The new route points to a controller method, so create that controller method.
3. The controller method typically forwards to a new template, so create that

template.
4. The controller method may also require a model class, so create that class as

needed.

To demonstrate this process, you’ll add on to the code created in Recipe 1. You’ll
create new code to handle a GET request at /people. This URI will return a list of
Person instances in an HTML format.

Create a new route
To begin, you know you want to handle a new URI at /people, so add a new route
to the conf/routes file. This will be an HTTP GET request, so map the URI by
adding this line to the end of the file:
GET /people controllers.Users.people

This can be read as, “When a GET request is made at the /people URI, invoke the
people method of the Users class in the controllers package.

	
 16

Create a new controller method
Next, create the Users object in a Users.scala file in the app/controllers
directory. Add the following code to that class:

package controllers

import play.api._
import play.api.mvc._
import models.Person

object Users extends Controller {

 def people = Action {
 val people = Person.getAll
 Ok(views.html.people(people))
 }

}

When the people method in this class is invoked, it gets a List of Person
instances from the Person object by calling the getAll method. It then passes
that List to a new template named people.scala.html. Neither the Person class
(and object) nor the template exist yet, so you’ll create them next.

Create a new model
To create the Person code, first create a models directory under the app
directory. It should be at the same level as the controllers and views folders. Then
create a new file named Person.scala under the models directory. Place these
contents into that file:
package models

case class Person(name: String)

object Person {

 def getAll = List(Person("Al"), Person("Darren"), Person("Rich"))

}

This file consists of a case class named Person, and its companion object with a
method named getAll. Although this example is simple, if you can imagine that
the companion object is accessing a database, this approach follows the database
access pattern shown in Play’s Anorm documentation (and that I use personally):
the model class and companion object are created in the same file, and the
companion object has the code that accesses the database; i.e., it is the data access
object (DAO).

	
 17

Create a new template
Next, create a people.scala.html template file in the views directory. Add the
following code to this file:
@(people: List[Person])

@main("Our List of People") {

 <h1>People</h1>

 @people.map { person =>

 @person.name

 }

}

This template takes one parameter, a List[Person] named people. As
shown in Recipe 1, the @main line invokes the main.scala.html wrapper
template, passing it the string “Our List of People” as its first parameter list. It
then passes it the block of code shown as its second parameter list. (Technically,
these are two separate parameter lists, but you can think of them as two
parameters, if you prefer.) Because people is a List[Person], the map
method is used to print the names from the Person instances in an unordered list
using and .

With all the code in place, go back to the Play console and restart the server, if
necessary:
[Hello] $ run 8080

(If the server is already running, there’s no need to restart it; another great Play
feature.)
Then go to your browser and enter the URL http://localhost:8080/people, and you
should see the result shown in Figure 3.

Figure 3. The output from the people.scala.html template displayed at the /
people URI

	
 18

Looking back at the Play console, you should see some output like this:
 [Hello] $ run 8080

[info] play - Listening for HTTP on port 8080...

(Server started, use Ctrl+D to stop and go back to the console...)

[info] Compiling 5 Scala sources and 1 Java source to
 target/scala-2.10.0/classes...
[info] play - Application started (Dev)

If your page wasn’t displayed, and you don’t see this output, press Ctrl-D to get
back to the Play prompt, and restart the server with the run command:
 [Hello] $ run 8080

(I haven’t seen this happen too often, but if Play fails to recompile your
application, this solves the problem.)

Discussion
As demonstrated, creating content at a new URI is typically a four-step process.
The example followed these steps to emit the new content at the /people URI:
• You created a new route for the /people URI in the conf/routes file.
• That new route mapped to a method named people in a controller named

Users, so you created that controller and method.
• The controller method forwards to the people.scala.html template file, so you

created that template.
• The controller got its information from the Person model, so you created

that class and its companion object.

There are a few other points worth mentioning. First, you didn’t have to create a
new controller; you could have just added the people method to the existing
Application controller. However, this approach is beneficial because it shows
the steps required to add a new controller, and it’s representative of what you’d do
in the real world.

Importing members into templates
Also, you may have noticed that you didn’t have to import the Person class into
the people.scala.html template file. Template files automatically import the
controllers._ and models._ members, so an import statement isn’t
needed.

	
 19

You’ll see in future recipes how to work with imports, but as a quick preview, all
you have to do is add the import statements after the first line of the template:
@(people: List[Person])

import com.foo.Foo
import org.bar.Bar

<!-- more code here ... -->

3) Using Multiple Template Wrappers
Problem
The previous recipes demonstrated how to use one master (or wrapper) template
that you can use to wrap all your template files to give your application a
consistent look and feel, but in a production application you want to use multiple
templates. For instance, you may want to have one template for the home page,
one for a shopping cart area of a website, another for a blog, etc.

Solution
The Play Framework template approach makes this very easy. Just create a new
wrapper template for each area of the website, and then call the desired wrapper
template from within your other templates, just like the main template is called in
Recipes 21.1 and 21.2.
For instance, create three wrapper template files with the following names in the
app/views folder:
• main.scala.html
• cart.scala.html
• blog.scala.html
For the purposes of this recipe, you can create the last two files by copying and
pasting the main.scala.html template file that Play generates for you. Then modify
each template file slightly so you’ll be able to see the difference between them in
a browser. For instance, add a different <h1> tag to each template.

Now, inside your other template files, instead of calling the main function, call
main, cart, or blog, as needed. For instance, if you have a template named
post.scala.html for your blog posts, that template file can call the blog function
to use blog.scala.html as a wrapper, as shown here:
@(title: String, blogPostContent: String)

@* call the blog.scala.html 'wrapper' template *@
@blog(title) {

	
 20

 @blogPostContent

}

A product page in an ecommerce store might invoke the cart.scala.html wrapper
template, as shown here:
@(title: String, product: Product)

@cart(title) {

 <!-- add code here to display the Product ... -->

}

Because Scala template files are compiled to functions, wrapping a template with
boilerplate code for a particular section of a website is very simple.

A quick example
If you followed the steps in Recipe 2, you can test this approach by following
these steps:
1. Create a blog.scala.html template file as described in this recipe. Modify its

<title> tag, or add an <h1> tag so you can differentiate its output from the
main.scala.html file.

2. Edit the people.scala.html template created in Recipe 2, and change @main to
@blog in that file.

3. Assuming you still have the Play server running, reload the http://localhost:
8080/people URL. You should see the wrapper output from your
blog.scala.html wrapper in the <h1> or <title> tags you added.

4) Creating Reusable Code Blocks in Templates
Problem
You have repetitive code in a template, and want to create a function in the
template to keep from having to repeat the code, i.e., to keep it DRY (“Don’t
Repeat Yourself”).

Solution
Play lets you create reusable code blocks in a template. These code blocks work
like functions to help keep your code DRY.
As an example, the following template file named links.scala.html has a reusable
code block named displayLiLink. It takes two parameters, a URL and a

	
 21

http://localhost:8080/people
http://localhost:8080/people
http://localhost:8080/people
http://localhost:8080/people

description, and outputs those parameters inside an anchor tag inside an
tag:
@()

@displayLiLink(url: String, description: String) = {
 @description
}

@main("Websites") {

 <h1>Websites</h1>

 @displayLiLink("http://google.com", "Google")
 @displayLiLink("http://yahoo.com", "Yahoo")
 @displayLiLink("http://alvinalexander.com", "My Website")

}

The displayLiLink function is called three times within the section
shown. Ignoring extra whitespace, this results in the following code being output
to the browser:

Google
Yahoo
My Website

If you’ve been following along with the previous recipes, you can demonstrate
this by making a few additions to your project. First, create a new file named
links.scala.html in the views directory with the contents shown.
Then add this new route to your conf/routes file:
GET /links controllers.Application.links

Then add this method to the controllers/Application.scala file:
def links = Action {
 Ok(views.html.links())
}

Now, when you access the http://localhost:8080/links URL in your browser, you
should see the list of links from the links.scala.html template.

Discussion
Reusable code blocks like this are easy to create and use in Play templates. The
hardest part about creating and using them can be knowing when to use the
special @ symbol.

	
 22

http://localhost:8080/links
http://localhost:8080/links

As the Play templates documentation indicates, the @ character marks the
beginning of a Scala statement. For simple expressions, Play is able to determine
the end of your code block, so there is no need for a closing symbol. This was
shown in the lines where the displayLiLink block was called:
@displayLiLink("http://google.com", "Google")

The reusable code block showed that you may need to use the @ character in
multiple places. In the example, the @ character is used to define the code block,
and then used to identify the variables inside the code block:
@displayLiLink(url: String, description: String) = {
 @description
}

As the Play templates documentation states, “Because the template engine
automatically detects the end of your code block by analyzing your code, this
syntax only supports simple statements. If you want to insert a multi-token
statement, explicitly mark it using brackets.” The documentation demonstrates
this in the following example:
Hello @(customer.firstName + customer.lastName)!

I’ve found this approach useful in many situations, such as when you want to
return a simple text string from a reusable code block, as shown in the @title
code block in the following example:

@(items: List[String])

@title = @{ "Your Shopping Cart" }

@cart(title) {

 <h1>@title</h1>

 @items.map { item =>
 @item
 }

}

Though that’s a trivial example, it demonstrates how to properly return a string
literal from a reusable code block. Attempting to define the code block as follows
results in an error:
@* intentional error *@

@title = "Your Shopping Cart"

On a related note, if you need to display an @ character in your HTML output, just
enter it twice. This is needed when you need to print an email address:

	
 23

<p>al@@example.com</p>

You can also call functions in regular Scala classes from templates. This is shown
in the next recipe.

5) Calling Scala Functions from Templates
Problem
You want to call a function in a Scala class from a template.

Solution
You can easily call Scala functions from Play templates. For instance, given a
class named HtmlUtils in the controllers package:
package controllers

object HtmlUtils {

 def li(string: String) = {string}
 def anchor(url: String, description: String) =
 {description}

}

you call the anchor method from a Play template like this:
<p>Here's a link to @HtmlUtils.anchor("http://google.com", "Google")</p>

Discussion
Notice that no import statement was required in the template because the
HtmlUtils class was defined in the controllers package. If the HtmlUtils
class was defined in a different package, like this:
package com.alvinalexander.htmlutils

object HtmlUtils {

 def li(string: String) = {string}
 def anchor(url: String, description: String) =
 {description}

}

you would need an import statement in the template, like this:
@* just after the first line of your template *@
@import com.alvinalexander.htmlutils.HtmlUtils

@* somewhere later in the code ... *@
<p>Here's a link to @HtmlUtils.anchor("http://google.com", "Google")</p>

	
 24

Because HtmlUtils is an object, you can change the import statement to
import its methods into scope, and then just call the anchor method (without
prefixing it with the HtmlUtils object name), as shown here:
@* import HtmlUtils._ *@
@import com.alvinalexander.htmlutils.HtmlUtils._

@* just call 'anchor' *@
<p>Here's a link to @anchor("http://google.com", "Google")</p>

Passing functions into templates
Although this recipe demonstrates how to call functions on an object, it’s worth
mentioning that you can also pass functions into your templates as template
parameters.
For instance, in the Application controller you can define the following
methods:
def sayHello = <p>Hello, via a function</p>

def functionDemo = Action {
 Ok(views.html.function(sayHello))
}

The function named functionDemo calls a Play template named
function.scala.html, and passes the sayHello method to it as a variable.
Because sayHello returns output of type scala.xml.Elem, the
function.scala.html template should be defined like this:
@(callback: => scala.xml.Elem)

@main("Hello") {

 @callback

}

If you’re not familiar with Scala’s functional programming (FP) support, the
parameter that’s passed into the template is defined like this:
callback: => scala.xml.Elem

This means that this is a function (or method) that takes no arguments, and returns
a scala.xml.Elem. See Chapter 9 of the Scala Cookbook for many more FP
examples.
If you created the example shown in Recipe 1, you can demonstrate this by
adding the following route to the conf/routes file:
GET /function controllers.Application.functionDemo

After creating the app/views/function.scala.html template, adding the code to the
app/controllers/Application.scala and the conf/routes files, when you access the

	
 25

http://localhost:8080/function URL in your browser, you’ll see the “Hello, via a
function” output.

See Also
• Recipe 1, “Creating a ‘Hello, World’ Project”

6) Creating a Widget and Including it in Pages
Problem
You want to create one or more “widgets” (components) and include those in your
web pages. This might include a shopping cart widget in an online store, a list of
recent blog posts in a blog, or any other reusable content you want to display.

Solution
This solution is similar to the previous recipe on calling methods in a Scala object
from a template. You can use that approach to emit HTML code from a function,
or you can place your widget code in another template file. The latter approach is
shown in this recipe.
To demonstrate this approach, imagine that you’re creating a “product detail”
page for a shopping cart. As a result, you’ll have a template file named
product.scala.html. For this simple example, the template will include two main
components, (a) the information you want to output about the current product, and
(b) a shopping cart widget that will be shown at the side of the page:
@(product: (String, String), items: List[String])

@* product.scala.html *@

@main(product._1) {

 <!-- include the shopping cart widget -->
 @cartWidget(items)

 <!-- a description of the current product -->
 <div style="padding:10px; margin:10px;">
 <h1>@product._1</h1>
 <div id="product_info">
 <p>@product._2</p>
 </div>
 </div>

}

In this case the @cartWidget(items) code refers to another template file
named cartWidget.scala.html. Its code looks like this:

	
 26

@(items: List[String])

<div style="background-color:#eee; padding:10px; margin:10px; float:left">
 <h2>Your Shopping Cart</h2>

 @items.map { item =>
 @item
 }

</div>

This template takes a List[String] that represents the items in the current
shopping cart, and items was passed to @cartWidget in the
product.scala.html file.
Assuming that you add this code to your project as described in the Discussion,
the combination of these templates will result in the output shown in Figure 4.

Figure 4. The cart widget is included with the product content

Discussion
An important concept to remember about Play is that template files are compiled
down to Scala functions. As a result, calling them -- and therefore including their
output in another template -- is a simple process.
If you followed along with the steps in Recipe 1, you can add this code to that
same project to demonstrate and experiment with it. First, create the
product.scala.html and cartWidget.scala.html template files in the app/views
directory.
Next, add this method to the Application.scala file in the app/controllers
directory:
def product = Action {
 val grapes = ("Grapes", "Grapes are nutritious and delicious")
 val cart = List("apples", "bananas", "carrots")
 Ok(views.html.product(grapes, cart))
}

Then add this route to the conf/routes file:
GET /product controllers.Application.product

	
 27

With these files in place, go back to your browser and access the http://localhost:
8080/product URL, and you should see the results shown in Figure 4.

See Also
• The source code for this recipe can be cloned from GitHub at the following

URL: https://github.com/alvinj/PlaySimpleTemplates

7) Using CoffeeScript and LESS
Problem
You want to use popular web technologies like CoffeeScript and LESS CSS in
your Play application.

Solution
CoffeeScript is a popular replacement for JavaScript, and LESS is a popular
replacement for writing CSS. It’s easy to use both technologies in your Play
applications, as shown in the following sections.

Using CoffeeScript
To use CoffeeScript in a Play application, follow these steps:
1. If your application doesn’t already have an app/assets folder, create it.

2. Inside the assets folder, create a scripts folder for your CoffeeScript files.
3. Place your custom CoffeeScript files inside the new scripts folder.

4. Assuming you created a file named main.coffee in the scripts folder, Play will
automatically compile your CoffeeScript file to JavaScript, and you can then
include the JavaScript file in your templates (such as main.scala.html) like
this:

<script src="@routes.Assets.at("scripts/main.js")" /></script>

Notice that the file main.js is generated from your main.coffee file.
That’s all you have to do. You can test this by following those steps, then placing
this code in the main.coffee file:
alert "Hello, world"

If you add the <script> line shown to the <head> section of your
main.scala.html template file, just access one of your URLs in your browser that
uses this template. When you reload the page, you should see a JavaScript alert
dialog displayed.

	
 28

http://localhost:8080/product
http://localhost:8080/product
http://localhost:8080/product
http://localhost:8080/product
https://github.com/alvinj/PlaySimpleTemplates
https://github.com/alvinj/PlaySimpleTemplates

Using LESS
Using LESS is also easy. Just follow these steps to begin using it:
1. If your application doesn’t already have an app/assets folder, create it.

2. Inside the assets folder, create a folder named stylesheets.
3. Inside that folder, create your custom LESS files. For instance, create a file

named myapp.less.

4. Play will compile your LESS source code to regular CSS. Assuming you
named your file myapp.less, a corresponding file named myapp.css will be
generated, and you can including it in your Play templates like this:

<link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/myapp.css")">

To test this, put the following code into a file named myapp.less in the app/assets/
stylesheets folder:
@color: red;

h1 {
 color: @color;
}

Then add this <link> tag into the <head> section of your main template
wrapper file, i.e., app/views/main.scala.html:
<link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/myapp.css")">

When you add an <H1> tag to a template that includes this CSS file, your <H1>
tags will be displayed in a red color.

See Also
• The CoffeeScript website: http://coffeescript.org/
• The LESS CSS website: http://lesscss.org/

	
 29

http://coffeescript.org/
http://coffeescript.org/
http://lesscss.org/
http://lesscss.org/

8) Creating a Simple Form
Problem
You want to get started creating forms in a Play Framework application.

Solution
Creating a new Play form is roughly a seven-step process:
1. Add new routes to app/conf/routes.

2. Create a template for your form.
3. Add a form mapping to your controller.
4. Add a form to your controller.
5. Create a controller action to display the form.
6. Create a second controller action to handle the form submission.
7. Create any model code necessary to work with the form, including classes to

model the domain (Person, Address, Stock, etc.), and data access
objects.

I’ll demonstrate these steps by creating a form to add a new Stock in a sample
Play application. A Stock consists of a stock market symbol and company name,
such as Stock("GOOG", "Google, Inc."). When completed, the form
will look like Figure 5.

You can follow the steps in this recipe, or clone my Play “Form
Validations” Project from https://github.com/alvinj/
PlayFormValidations.

	
 30

https://github.com/alvinj/PlayFormValidations
https://github.com/alvinj/PlayFormValidations
https://github.com/alvinj/PlayFormValidations
https://github.com/alvinj/PlayFormValidations

Figure 5. The form to add a new stock

To get started, first create a new Play application with the play new command:
$ play new Stocks

Answer Play’s questions, and then move into the directory it creates for you.

Add a route to app/conf/routes
Next, edit the app/conf/routes file, and add two entries to the end of the file. The
add entry will be used to display the new form at the URL http://localhost:8080/
stocks/add. When this form is submitted, it will submit its contents using the
POST method to the save action:
stocks
GET /stocks/add controllers.Stocks.add
POST /stocks/save controllers.Stocks.save

	
 31

http://localhost:8080/stocks/add
http://localhost:8080/stocks/add
http://localhost:8080/stocks/add
http://localhost:8080/stocks/add

Create a template for your form
Next, create a Play template for the form. Save the following code to a file named
form.scala.html in a new directory named app/views/stock:
@(stockForm: Form[Stock])

@import helper._
@import helper.twitterBootstrap._

@main("Add Stock") {

 <h2>Add a Stock</h2>

 @helper.form(action = routes.Stocks.save, 'class->"form-inline") {

 @inputText(
 stockForm("symbol"),
 '_label -> "Symbol",
 'class -> "control-label"
)

 @inputText(
 stockForm("company"),
 '_label -> "Company",
 'class -> "control-label"
)

 <div class="form-actions">
 <input type="submit" class="btn btn-primary" value="Add Stock">
 Cancel
 </div>

 }

}

This is a basic Play form template, with a bit of CSS added to make the form look
a little better. Values like '_label and 'class are described in Table 4 in
Recipe 10, but as you might guess, they represent the label and CSS class for each
field.

	
 32

Add a Form mapping in your controller
Now it’s time to start creating a Stocks controller. Create a file named
Stocks.scala in the app/controllers directory with the following stub code:
package controllers

import play.api._
import play.api.mvc._
import play.api.data._
import play.api.data.Forms._
import models.Stock

object Stocks extends Controller {

}

(If you want to skip ahead, the complete code for this class is shown in the
Discussion.)
Now, when the form in the form.scala.html template is submitted, the form data
will be sent to the save method in the Stocks class. When this happens, the
two fields in the form will be represented by a Map. For instance, if the user types
in the information for Google’s stock, the Map will look like this:
Map("symbol" -> "GOOG",
 "company" -> "Google")

The approach to handling this form data in Play is to create a form mapping as a
field in the Stocks controller class. The following mapping declares that the
symbol field can’t be empty―it’s a required field―but the company field is
optional:
object Stocks extends Controller {

 // the new form mapping field
 val formMapping = mapping(
 "symbol" -> nonEmptyText,
 "company" -> optional(text)
)
 (Stock.apply)(Stock.unapply)

}

The type of the formMapping field is play.api.data.Mapping
[models.Stock].
The Stock.apply method is used to construct a new Stock instance from the
mapping, such as when a new Stock instance is created. The Stock.unapply
method is used in the opposite case, when you want to create a mapping from an
existing Stock object, such as when editing an existing object.

	
 33

Add a Form in your controller
Next, create a Form instance from the mapping. Add the following line of code
just below the formMapping:
val stockForm: Form[Stock] = Form(formMapping)

The code for the Mapping and Form are often included in one statement, but
I’ve separated them here to demonstrate the steps and types.

Create a controller action to display the form
Next, create an action in the controller to display the form. This action was
referred to as controller.Stocks.add in the conf/routes files, so name it
add:
def add = Action {
 Ok(views.html.stock.form(stockForm))
}

This is a normal Play method that implements an Action. It simply displays the
template named app/views/stock/form.scala.html, passing the stockForm to the
template.

Create a second controller action to handle the form submission
Next, you need a controller action to handle the form submission. The following
code shows the pattern to handle a form submission:
def save = Action { implicit request =>
 stockForm.bindFromRequest.fold(

 // (1) on a validation error go back to the form
 errors => BadRequest(views.html.stock.form(errors)),

 // (2) on success create the stock, go to another page
 stock => {
 Stock.save(stock)
 Redirect(routes.Stocks.add)
 }
)
}

The save method receives the HTTP request from the form, and the
bindFromRequest method binds the stockForm to the data received in the
request. This process is called binding the request to the form.

Because the logic of evaluating a form results in two possible branches―failure
or success―the fold method is a good choice to handle this. In the failure case
(#1), when the form validation process results in an error, call the BadRequest
function, giving it a reference to the form so it can redisplayed.
In the success case (#2), a new Stock object is created, so save it to the database,
and then forward the user to whatever page you want to display next. To keep this

	
 34

example small, the code redirects users to the same “add stock” page, but you can
forward them to any template you define.

Create any model code necessary to work with the form, including classes to
model the domain (Person, Address, Stock, etc.), and data access objects
For this form, create a case class named Stock and a corresponding companion
object. To do this, first create a models folder under the app folder, and then create
a Stock.scala file in the models folder.
Rather than creating a full DAO at this time, just create a simple Stock object
with a save method that provides a little debugging output. Put this code in the
Stock.scala file:
package models

case class Stock(symbol: String, company: Option[String])

object Stock {

 def save(stock: Stock) {
 println(s"Would have created stock: $stock")
 }

}

In your real-world code you would implement this save method as shown in
Recipe 11, “Inserting Data into a Database with Anorm,” but to keep this example
relatively simple, I avoided that extra code.

One extra step
I followed one extra step in my example to create a decent-looking form. As
described in the Discussion, I added some “Twitter Bootstrap” code to my form to
make it look a little better. If you follow this additional step, your “Add Stock”
form should look like Figure 6.

Testing
To test all of the new code, start the Play console from the root directory of your
project:
$ play

and then start the Play server:
[Stocks] $ run 8080

You should now be able to access the form at the http://localhost:8080/stocks/add
URL.
When your form is running, you should be able to successfully submit it as long
as you supply text for the symbol field. The company field is optional, but if

	
 35

http://localhost:8080/stocks/add
http://localhost:8080/stocks/add

you don’t supply text for the symbol field when you submit the form, you should
see the “This field is required” error message shown in Figure 6.

Figure 6. When the form is submitted without a Symbol value, an error message
is displayed

	
 36

Discussion
The complete code for the Stocks controller class is shown here for your
convenience:
package controllers

import play.api._
import play.api.mvc._
import play.api.data._
import play.api.data.Forms._
import models.Stock

object Stocks extends Controller {

 val formMapping = mapping(
 "symbol" -> nonEmptyText,
 "company" -> optional(text)
)(Stock.apply)(Stock.unapply)

 val stockForm: Form[Stock] = Form(formMapping)

 def add = Action {
 Ok(views.html.stock.form(stockForm))
 }

 /**
 * Handle the 'add' form submission.
 */
 def save = Action { implicit request =>
 stockForm.bindFromRequest.fold(
 // (1) on a validation error go back to the form
 errors => BadRequest(views.html.stock.form(errors)),
 // (2) on success create the stock, go to another page
 stock => {
 Stock.save(stock)
 Redirect(routes.Stocks.add)
 }
)
 }

}

As mentioned in the Solution, the Form and Mapping are often combined in one
step, like this:
val stockForm: Form[Stock] = Form(
 mapping(
 "symbol" -> nonEmptyText,
 "company" -> optional(text)
)(Stock.apply)(Stock.unapply)
)

Defining the form mapping is typically the most difficult part of creating a new
form. As you’ll see in Recipe 9, “Validating a Form,” form field validations are

	
 37

added to this code as well, so in real-world code the mapping can get more
complex.
When you define a Mapping, Play provides a number of data manipulation
helpers that you can use to define form fields. These helpers are defined in the
play.api.data.Forms object. Table 1 in the next recipe shows many of the helpers
that are available in Play 2.1.1.

Generating Play forms fast
Years ago I realized that most initial form development is driven by your database
design. For instance, most of the code shown in these Anorm recipes can be
generated from stocks database table. Realizing this, I created a “CRUD
Generator” tool named Cato to generate the initial “CRUD” (Create-Read-
Update-Delete) source code for my applications. Because Cato is language-
independent and template-driven, I was able to create Cato templates for the Play
Framework that let me rapidly create Play forms. See this video demonstration of
how I can create a complete initial set of Play CRUD forms for a real-world
database table in just over seven minutes.

Using Twitter Bootstrap
Twitter Bootstrap is a frontend framework to help make cross-platform web
development easier. If you ever started a new web development project and
wished there was a standard set of CSS definitions for web forms (and a few other
tools), Bootstrap may be what you’re looking for.
At the time of this writing, Play’s support for Bootstrap is in flux. The latest
release of Bootstrap is version 2.3.2, but Play 2.1.1 supports Bootstrap 1.4.x, so
using that version is demonstrated here.
Probably the easiest way to use the Twitter Bootstrap 1.4.x release is to copy the
files that are needed from the “forms” sample project that ships with Play. You’ll
find the forms project folder under the samples directory of your Play installation
folder. There are both Scala and Java versions of this project, so use the Scala
version.
Within the forms project, switch to the public/stylesheets folder. From that folder,
copy the bootstrap.css and main.css files, then paste them into the same directory
in your Play project. If you already have files with these names, be careful about
overwriting them.
Once you’ve copied those files into your project, add these lines of code to the
<head> section of your template wrapper file, e.g., the default main.scala.html.
The line to include the main.css file may already exist:
<link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/bootstrap.css")">
<link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/main.css")">

	
 38

http://www.playframework.org/documentation/api/2.0/scala/play/api/data/Forms$.html
http://www.playframework.org/documentation/api/2.0/scala/play/api/data/Forms$.html
http://www.catocrudgenerator.com/
http://www.catocrudgenerator.com/
http://alvinalexander.com/scala/crud-forms-play-framework-2-cato-crud-generator
http://alvinalexander.com/scala/crud-forms-play-framework-2-cato-crud-generator

As shown in the form.scala.html template in this recipe, you’ll also need to
include this line of code in your form template files:
@import helper.twitterBootstrap._

Now, when you develop your forms, they should be styled with the Twitter
Bootstrap CSS. Some of this styling is shown in Figure 7.

Figure 7. A sample form styled with Twitter Bootstrap (and a little additional
CSS)

	
 39

9) Validating a Form
Problem
You want to validate the fields in a form in a controller method to make sure the
data matches your constraints before attempting to save the form data to a
database.

Solution
When you define a Mapping, Play provides a number of data manipulation
helpers that you can use to define form fields. These helpers come from the
play.api.data.Forms object. Table 1 shows many of the helpers that are available
in Play 2.1.1.

Table 1. Common Play data manipulation helpers

Data Manipulation Helper Description
boolean A mapping for a Boolean field, such as a checkbox.
date A mapping for a date field.
email A mapping for an email field.
ignored A field in your form that should be ignored for validation

purposes.
list A repeated mapping, such as when you prompt a user

with an email field and a “verify email address” field.
longNumber A mapping for a numeric field. Uses a Long type.
nonEmptyText A mapping for a required text field.
number A mapping for a numeric field (Int).
optional Makes the mapping optional.
single A mapping for a single value.
sqlDate A mapping for a date field, mapped as a sql.Date.
text A mapping for a text field.

See the play.api.data.Forms object documentation for additional mappings.

	
 40

http://www.playframework.org/documentation/api/2.0/scala/play/api/data/Forms$.html
http://www.playframework.org/documentation/api/2.0/scala/play/api/data/Forms$.html
http://www.playframework.org/documentation/api/2.0/scala/play/api/data/Forms$.html
http://www.playframework.org/documentation/api/2.0/scala/play/api/data/Forms$.html

The following list of example form fields shows different ways that these helpers
can be used:
"readEula" -> boolean,
"date" -> date("yyyy-MM-dd"),
"email" -> email,
"id" -> ignored(1234),
"stocks" -> list(text),
"addresses" -> list(email),
"username" -> nonEmptyText,
"username" -> nonEmptyText(5), // requires a minimum of five characters
"count" -> number,
"company" -> optional(text),
"number" -> optional(number),
"notes" -> text,
"password" -> text(minLength = 10),

More examples of these constraints are demonstrated in this recipe.
The Play Framework also defines constraints in the
play.api.data.validation.Constraints object. These are described
in Table 2.

Table 2. Constraints from the play.api.data.validation.Constraints object

Constraints’ Method Description
min(minValue: Int): Constraint[Int] A constraint to specify a minimum value

for an Int.
max(maxValue: Int): Constraint[Int] Specify a maximum value for an Int.
minLength(length: Int): Constraint
[String]

Specify a minimum length constraint for a
String.

maxLength(length: Int): Constraint
[String]

Specify a maximum length constraint for
String.

nonEmpty: Constraint[String] Create a “required” constraint for a
String.

pattern(regex: Regex, name: String,
error: String): Constraint[String]

Create a regular expression constraint for a
String.

Although you can use the min, max, minLength, and maxLength methods,
the Play classes offer some conveniences, so you can just put the min and max
values in parentheses of the data manipulation helpers, as shown in these
examples:
"username" -> nonEmptyText(5, 20), // 5 to 20 characters
"password" -> nonEmptyText(8), // at least eight characters

	
 41

The following example Form demonstrates most of the built-in validations,
including how to specify a pattern while validating a text field:
 val mongoForm = Form(
 mapping(
 "username" -> nonEmptyText(5, 20),
 "firstName" -> text(5, 20),
 "middleInitial" -> optional(text),
 "email" -> email,
 "number" -> number(1, 5),
 "host" ->
 text.verifying(pattern("[a-z]*".r, "Lowercase chars only", "Error")),
 "age" -> optional(number),
 "longNumber" -> longNumber,
 "optionalNumber" -> optional(number),
 "date" -> date("yyyy-MM-dd"), // java.util.Date
 "password" -> nonEmptyText(8),
 "readEula" -> checked("Please accept the terms of the EULA"),
 "yesNoSelect" -> text, // treat select/option as 'text'
 "yesNoRadio" -> text, // treat radio buttons as 'text'
 "stocks" -> list(text),
 "notes" -> optional(text),
 "ignored" -> ignored("foo") // static value
)(Mongo.apply)(Mongo.unapply)
)
)

When the built-in validators aren’t enough, you can define your own constraints
using the verifying method, both on individual fields (as shown on the host
field) and at the form level.
For instance, in my Finance application, I check to see whether a stock is already
in the database before I attempt to add it. I can make that check either at the field
level or at the form level. The following code demonstrates how to use
verifying at the field level to test whether the stock is already in the database:
val stockForm: Form[Stock] = Form(
 mapping(
 "symbol" -> nonEmptyText.verifying(
 "D'oh - Stock already exists!",
 Stock.findBySymbol(_) == 0),
 "company" -> optional(text))
 (Stock.apply)(Stock.unapply)
)

In this case the validation is at the field level, so this field will be validated at the
same time as all other fields in the form. The downside of this approach is that the
Stock.findBySymbol method will be called every time the form is
submitted, and the upside is that if the stock is already in the database, I can tell
the user about this at the same time as I tell him about any other field errors. (This
is trivial in this example, but can be important in a larger form, or on a busy
website.)

	
 42

The following code demonstrates how to perform the same verification test at the
form level:
val stockForm: Form[Stock] = Form(
 mapping(
 "symbol" -> nonEmptyText,
 "company" -> optional(text))
 (Stock.apply)(Stock.unapply)
 verifying("D'oh - Stock already exists!", fields => fields match {
 // this block creates a 'form' error.
 // this only gets called if all field validations are okay.
 case Stock(i, s, c) => Stock.findBySymbol(s) == 0
 })
)

As the comments mention, a verifying method included here will only be
called when all of the field-level validations pass. Therefore, this hit on the
database will only happen when the form has otherwise been filled out properly.
As you probably suspected, the Stock.findBySymbol method that is invoked
in these verifying calls returns the count of the number of records found in
the stocks database table that has the same symbol. Using Anorm, that method
looks like this:
def findBySymbol(symbol: String): Long = {
 if (symbol.trim.equals("")) return 0
 DB.withConnection { implicit c =>
 val firstRow =
 SQL("SELECT COUNT(*) AS c FROM stocks WHERE symbol = {symbol}")
 .on('symbol -> symbol.toUpperCase)
 .apply
 .head
 firstRow[Long]("c") // returns the count
 }
}

Discussion
The best way to demonstrate these validations is with an example form. To that
end, I’ve created a PlayFormValidations project that you can clone from GitHub
at https://github.com/alvinj/PlayFormValidations. This project creates the form
shown in Figure 8. It demonstrates common validations, and how you can control
the form appearance with the template file and form mappings.

	
 43

https://github.com/alvinj/PlayFormValidations
https://github.com/alvinj/PlayFormValidations

Figure 8. An example form that demonstrates common form field validations

The form in Figure 8 was created by putting the following code in conf/routes:

home page
GET / controllers.Application.index

validation examples
GET /validations/add controllers.ValidationsController.add
POST /validations/save controllers.ValidationsController.save

map static resources from the /public folder to the /assets URL
GET /assets/*file controllers.Assets.at(path="/public", file)

	
 44

The template file for the form is app/views/validationsform.scala.html:
@(validationsForm: Form[Validations])

@import helper._
@import helper.twitterBootstrap._

@main("Sample Form Validations") {

 @* this block of code will display form-level errors *@
 @if(validationsForm.hasErrors) {
 <div class="alert-message">
 <p>There were one or more errors with the form:</p>

 @validationsForm.errors.map { error =>
 @error.message
 }

 </div>
 }

 @helper.form(action = routes.ValidationsController.save) {

 @* demonstrates a textfield, label, and placeholder text *@
 @inputText(validationsForm("username"), '_label -> "Username",
 'placeholder -> "Username")

 @* you can use placeholders on these fields as well *@
 @inputText(validationsForm("firstName"), '_label -> "First Name")
 @inputText(validationsForm("number"), '_label -> "Number")
 @inputText(validationsForm("score"), '_label -> "Score",
 '_help -> "The score, from 1 to 100")
 @inputText(validationsForm("host"), '_label -> "Host")
 @inputText(validationsForm("age"), '_label -> "Age",
 '_help -> "Enter your age, if you'd like")
 @textarea(validationsForm("notes"), '_label -> "Notes",
 '_help -> "Any notes you want to add")

 <div class="form-actions actions">
 <input type="submit" class="btn btn-primary" value="Save">
 Cancel
 </div>

 }

}

The template demonstrates several different useful techniques, including setting
placeholder text on the Username field, and supplying help text for several other
fields. Refer to Figure 8 to see the help text that Play automatically generates for
the fields I haven’t manually supplied, including the First Name, Number, and
Host fields.

	
 45

The form validation code is in app/controllers/ValidationsController.scala:
package controllers

import play.api._
import play.api.mvc._
import play.api.data._
import play.api.data.Forms._
import models.Validations
import play.api.data.validation.Constraints._
import scala.util.matching.Regex

object ValidationsController extends Controller {

 val x = pattern("".r, "", "")

 val validationsForm = Form(
 mapping(
 "username" -> nonEmptyText(5, 20),
 "firstName" -> text(1, 20),
 "number" -> number(1, 5),
 "score" -> number.verifying(min(1), max(100)),
 "host" -> nonEmptyText.verifying(pattern("[a-z]+".r,
 "One or more lowercase characters", "Error")),
 "age" -> optional(number),
 "notes" -> optional(text)
)(Validations.apply)(Validations.unapply)
 verifying("If age is given, it must be greater than zero", model =>
 model.age match {
 case Some(age) => age < 0
 case None => true
 }
)
)

 def add = Action {
 Ok(views.html.validationsform(validationsForm))
 }

 /**
 * Handle the 'add' form submission.
 */
 def save = Action { implicit request =>
 validationsForm.bindFromRequest.fold(
 errors => BadRequest(views.html.validationsform(errors)),
 stock => {
 // would normally do a 'save' here
 Redirect(routes.ValidationsController.add)
 }
)
 }

}

	
 46

Finally, the corresponding model is in app/models/Validations.scala:
package models

case class Validations (
 username: String,
 firstName: String,
 number: Int,
 score: Int,
 host: String,
 age: Option[Int],
 notes: Option[String]
)

Once you have all the files in place, start the Play server as usual. I run it on port
8080:
$ play

[PlayFormValidations] $ run 8080

Then access the form at the http://localhost:8080/validations/add URL.
Field-level validations will result in error messages right next to the field where
the error occurred, and because of the way the template is defined, form-level
errors will be displayed above the form.
For instance, the following verifying code on the form mapping is a form-
level validation:
verifying("If age is given, it must be greater than zero", model =>
 model.age match {
 case Some(age) => age < 0
 case None => true
 }
)

As the text implies, it checks to see if an age is given, and if the age is given, it
must be greater than zero. When this validation error is triggered, the error
message that’s displayed above the form looks like Figure 9.

Figure 9. A form-level validation error message

	
 47

http://localhost:8080/validations/add
http://localhost:8080/validations/add

This error message is displayed due to the following block of code, which is
included in the template, above the form:
@* this block of code will display form-level errors *@
@if(validationsForm.hasErrors) {
 <div class="alert-message">
 <p>There were one or more errors with the form:</p>

 @validationsForm.errors.map { error =>
 @error.message
 }

 </div>
}

This recipe demonstrates a number of different methods to validate a form. To
experiment with this code on your own system, clone my GitHub project from
https://github.com/alvinj/PlayFormValidations.

10) Displaying and Validating Common Play Form
Elements
Problem
You want to use common HTML elements in a Play Framework form, such as a
text field, textarea, drop-down list, checkbox, buttons, etc., and it would be
helpful to see examples of how they are created and used.

Solution
The easiest way to demonstrate the common Play form widgets is to create a form
that has at least one of each widget type. The “mongo” form shown in Figure 10
shows all the built-in widgets types.

	
 48

https://github.com/alvinj/PlayFormValidations
https://github.com/alvinj/PlayFormValidations

Figure 10. This large form demonstrates common form widgets

	
 49

As discussed in previous recipes, you create this form by adding the following
components to your project:
• A form template
• A form controller class
• A model class

The easiest way to use this code is to clone my “Mongo Form” project from
https://github.com/alvinj/PlayMongoForm.
I created the form template with the filename app/views/mongoform.scala.html.
Its contents are:
@(mongoForm: Form[Mongo])

@import helper._
@import helper.twitterBootstrap._

@main("Sample Form Widgets") {

 @helper.form(action = routes.MongoController.save) {

 @* demonstrates a textfield, label, and placeholder text *@
 @inputText(mongoForm("username"), '_label -> "First Name",
 'placeholder -> "First Name")

 @inputText(mongoForm("middleInitial"),
 '_label -> "Middle Initial",
 '_help -> "Enter your middle initial (not required)")

 @* email and number fields *@
 @inputText(mongoForm("email"), '_label -> "Email")
 @inputText(mongoForm("number"), '_label -> "Number")
 @inputText(mongoForm("longNumber"), '_label -> "Long Number")
 @inputText(mongoForm("optionalNumber"), '_label -> "Optional Number")

 @* checkbox *@
 @checkbox(mongoForm("readEula"), '_label -> "Confirm:",
 '_text -> "Sure, I read the EULA")

 @* date *@
 @inputDate(mongoForm("date"), '_label -> "Date")

 @* password *@
 @inputPassword(mongoForm("password"), '_label -> "Password")

 @* select/option field *@
 @select(mongoForm("yesNoSelect"), options("yes"->"Yes", "no"->"No"),
 '_label -> "Yes or No:")

 @* radio buttons *@
 @inputRadioGroup(mongoForm("yesNoRadio"), options("yes"->"Yes", "no"->"No"),
 '_label -> "Yes/No:")

	
 50

https://github.com/alvinj/PlayMongoForm
https://github.com/alvinj/PlayMongoForm

 @* request user enter multiple words *@
 @helper.repeat(mongoForm("stocks"), min = 2) { stockField =>
 @inputText(stockField, '_label -> "Stocks")
 }

 @textarea(mongoForm("notes"))

 @* 'ignored' field (static content) *@
 @inputText(mongoForm("ignored"), '_label -> "Ignored")

 <div class="form-actions actions">
 <input type="submit" class="btn btn-primary" value="Save">
 Cancel
 </div>

 }

}

This template refers to a main.scala.html wrapper template file:
@(title: String)(content: Html)

<!DOCTYPE html>

<html>
 <head>
 <title>@title</title>
 <link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/bootstrap.css")">
 <link rel="stylesheet" media="screen"
 href="@routes.Assets.at("stylesheets/main.css")">
 <link rel="shortcut icon" type="image/png"
 href="@routes.Assets.at("images/favicon.png")">
 <script src="@routes.Assets.at("javascripts/jquery-1.7.1.min.js")"
 type="text/javascript"></script>
 </head>

 <body>
 <div class="container">

 <div class="content">

 <div class="page-header">
 <h1>@title</h1>
 </div>

 <div class="row">
 <div class="span14">
 @content
 </div>
 </div>

 </div>

 <footer>

	
 51

 <p>
 </p>
 </footer>

 </div>
 </body>

</html>

To validate and process the form, I created a file named app/controllers/
MongoController.scala:
package controllers

import play.api._
import play.api.mvc._
import play.api.data._
import play.api.data.Forms._
import models.Mongo

object MongoController extends Controller {

 val mongoForm = Form(
 mapping(
 "username" -> nonEmptyText(5, 20),
 "middleInitial" -> optional(text),
 "email" -> email,
 "number" -> number,
 "longNumber" -> longNumber,
 "optionalNumber" -> optional(number),
 "date" -> date("yyyy-MM-dd"), // java.util.Date
 "password" -> nonEmptyText(8),
 "readEula" -> checked("Please accept the terms of the EULA"),
 "yesNoSelect" -> text, // treat select/option as 'text'
 "yesNoRadio" -> text, // treat radio buttons as 'text'
 "stocks" -> list(text),
 "notes" -> optional(text),
 "ignored" -> ignored("foo") // static value
)(Mongo.apply)(Mongo.unapply)
)

 def add = Action {
 Ok(views.html.mongoform(mongoForm))
 }

 /**
 * Handle the 'add' form submission.
 */
 def save = Action { implicit request =>
 mongoForm.bindFromRequest.fold(
 errors => BadRequest(views.html.mongoform(errors)),
 stock => {
 // would normally do a 'save' here
 Redirect(routes.MongoController.add)
 }

	
 52

)
 }

}

The Mongo form class is at app/models/Mongo.scala, and is defined like this:
package models

import java.util.Date

case class Mongo (
 username: String,
 middleInitial: Option[String],
 email: String,
 number: Int,
 longNumber: Long,
 optionalNumber: Option[Int],
 date: Date,
 password: String,
 readEula: Boolean,
 yesNoSelect: String,
 yesNoRadio: String,
 stocks: List[String],
 notes: Option[String],
 ignored: String
)

Once you have all the files in place, start the Play server as usual. I run it on port
8080:
$ play

[MongoForm] $ run 8080

You can now access the form at the http://localhost:8080/mongo/add URL.

Discussion
The code in this recipe demonstrates three essential things related to Play forms:
• How to create each widget in a template file using Play’s predefined helpers.
• How to map and validate each widget.
• How to create a model to match the mapping.

An important part of this recipe is understanding how to configure the proper
mapping for each widget. I included some extra rows in the template to
demonstrate many of the common form mappings, including text,
nonEmptyText, optional(text), and more difficult mappings like
checkboxes, the select/option control, and radio buttons. For those more difficult
controls, the examples show the following:
• An @checkbox widget maps to a checked validation.

	
 53

http://localhost:8080/mongo/add
http://localhost:8080/mongo/add

• The @select widget maps to a text validation.
• The @inputRadioGroup maps to a text validation.

The input helpers are defined in the package object of Play’s views.html.helper
package. Table 3 provides a brief description of the common helper objects.

Table 3. Common Play helper objects

Play Helper Object Description
checkbox An HTML input checkbox.
form Creates an HTML form.
input A generic HTML input.
inputDate An HTML5 date input.
inputFile An HTML file input.
inputPassword An HTML password input field.
inputRadioGroup An HTML radio group.
inputText An HTML text input field.
select An HTML select/option field.
textarea An HTML textarea.

As shown in the examples, you can set “input helper” options on the fields, using
an object known as a FieldConstructor. Options you can set are shown in Table 4.

Table 4. Play input helper options

Field Constructor Option Description
_error -> "Error, error!" Use a custom error message for the field.
_help -> "(mm-dd-yyyy)" Show custom help text.
_id -> "stock-form" Create a CSS ID for the top <DL> element.
_label -> "Symbol:" Use a custom label for the field. (This is very

common.)
_showConstraints -> true Set to true to show the field constraints, or false

to hide them.
_showErrors -> true Set to false to hide errors on the field.

As mentioned, this example uses some custom CSS that’s based on the Twitter
Bootstrap project. The templates use two CSS files that I copied from the Play
samples/form project, and then modified. See Recipe 8 for a discussion about
using Twitter Bootstrap 1.4 with Play 2.1.1.

See Also
• The easiest way to use all of this code is to clone my GitHub project: https://

github.com/alvinj/PlayMongoForm

	
 54

http://www.playframework.org/documentation/api/2.0/scala/views/html/helper/FieldConstructor$.html
http://www.playframework.org/documentation/api/2.0/scala/views/html/helper/FieldConstructor$.html
http://twitter.github.io/bootstrap/index.html
http://twitter.github.io/bootstrap/index.html
http://twitter.github.io/bootstrap/index.html
http://twitter.github.io/bootstrap/index.html
https://github.com/alvinj/PlayMongoForm
https://github.com/alvinj/PlayMongoForm
https://github.com/alvinj/PlayMongoForm
https://github.com/alvinj/PlayMongoForm

• Play’s predefined helpers: http://www.playframework.org/documentation/api/
2.0/scala/views/html/helper/package.html

11) Selecting from a Database with Anorm
Problem
You want to select data from a database using the Play’s built-in Anorm library.

Solution
There are several different ways to write SQL SELECT methods using Anorm,
and each approach will be shown here. When you’ve finished this recipe, you’ll
have all of the code needed to display a list of stocks at a URL, as shown in
Figure 11.

Figure 11. The result of selecting all the stocks from the database

To make it easy to learn Anorm, I created a project you can clone from GitHub at
https://github.com/alvinj/PlayStocksProject. It includes the code from all of the
Anorm recipes in this chapter.

One-time configuration
The first thing you’ll need for this recipe is a MySQL database table named
stocks with this definition:
create table stocks (
 id int auto_increment not null,
 symbol varchar(10) not null,
 company varchar(32),
 primary key (id),
 constraint unique index idx_stock_unique (symbol)
);

You’ll also need some sample data, so insert a few records into the table:
INSERT INTO stocks (symbol, company) VALUES ('AAPL', 'Apple');
INSERT INTO stocks (symbol, company) VALUES ('GOOG', null);

	
 55

http://www.playframework.org/documentation/api/2.0/scala/views/html/helper/package.html
http://www.playframework.org/documentation/api/2.0/scala/views/html/helper/package.html
http://www.playframework.org/documentation/api/2.0/scala/views/html/helper/package.html
http://www.playframework.org/documentation/api/2.0/scala/views/html/helper/package.html
https://github.com/alvinj/PlayStocksProject
https://github.com/alvinj/PlayStocksProject

Next, create a new Play application, as shown in Recipe 1. (Use the play new
command.)
Now you need to connect your Play application to the MySQL database. To do
this, edit the conf/application.conf file, and add these lines to the “Database
configuration” section of that file:
db.default.url="jdbc:mysql://localhost:8889/stocks"
db.default.driver=com.mysql.jdbc.Driver
db.default.user=root
db.default.pass=root

My database is named stocks, and I use MAMP, which runs MySQL on port
8889 by default. Change these settings as needed for your server.

You also need to add MySQL as a dependency to your project. To do this, edit the
project/Build.scala file in your project, and add MySQL as a dependency to the
appDependencies variable:
val appDependencies = Seq(
 // Add your project dependencies here,
 jdbc,
 anorm,
 "mysql" % "mysql-connector-java" % "5.1.25"
)

Now that your Play application is ready to connect to your MySQL database, it’s
time to write the code to display the results of a SQL SELECT statement.

Steps to displaying the results of a SQL SELECT statement
The steps required to display the results of a SQL SELECT query at a new URL
are:
1. Create a template to show the results.
2. Add an entry to the conf/routes file to bind the template to a controller

method.
3. Create a Stocks controller.

4. Create a Stock model class and a corresponding Stock object (a
companion object).

Create a template to show the results
To create the view shown in Figure 11, first create a stock folder under the app/
views folder. Then create a list.scala.html file under the stock folder with these
contents:
@(stocks: List[Stock])

@main("Stocks") {

 <h1>You have @stocks.size Stock(s)</h1>

	
 56

 <div>

 @stocks.map { stock =>

 @stock.symbol

 }

 </div>

}

This template receives a List[Stock] and calls the main wrapper template to
display the Stock symbols in a bulleted list.

Configure the route
To list the stocks at the /stocks URI, create this entry in the conf/routes file:
GET /stocks controllers.Stocks.list

Create a Stocks controller class
Now create a Stocks controller with a list method to match the route:
package controllers

import play.api._
import play.api.mvc._
import views._
import models._

object Stocks extends Controller {

 def list = Action {
 Ok(html.stock.list(Stock.selectAll()))
 }

}

The list method gets a List of Stock objects from the selectAll method
of a Stock object, and passes that list to the list.scala.html template file in the
app/views/stock folder.

Create a Stock model class and companion object
For the SELECT query (and all other SQL queries), you’ll need a Stock model
class, which you can define as a simple case class.
The Anorm standard is to create database methods in the companion object of the
model class, so create a Stock object in the same file. To select records from the
database, you need a “select all” method, which I named selectAll.

To implement this code, create the app/models folder, then create a file in the
models folder named Stock.scala, with this source code:

	
 57

package models

case class Stock (val id: Long,
 var symbol: String,
 var company: Option[String])

object Stock {

 import play.api.db._
 import play.api.Play.current

 // create a SqlQuery for all of the "select all" methods
 import anorm.SQL
 val sqlQuery = SQL("select * from stocks order by symbol asc")

 def selectAll(): List[Stock] = DB.withConnection { implicit connection =>
 sqlQuery().map (row =>
 Stock(row[Long]("id"),
 row[String]("symbol"),
 row[Option[String]]("company"))
).toList
 }

}

If you’ve written JDBC code before, this code is somewhat similar to using a
ResultSet. The selectAll method executes the sqlQuery (which is an
instance of anorm.SqlQuery), calls the map method on the sqlQuery,
creates a new Stock object from each Row in the results, and returns the result
as a List[Stock].
Notice that the company field is declared as an Option[String] in the case
class, and is used similarly in the selectAll method. This is how you handle
optional fields, which may be null in the database.

Access the URI
When you access the /stocks URI in your browser, such as http://localhost:8080/
stocks, you should see the result shown in Figure 11, a list of stocks in the
stocks database table.

Discussion
There are several other ways to write SELECT queries with Anorm. A second
approach uses Scala’s pattern-matching capability to create Stock instances
based on each row:
import anorm.Row

def selectAll() : List[Stock] = {
 DB.withConnection { implicit connection =>
 sqlQuery().collect {
 case Row(id: Int, symbol: String, Some(company: String)) =>

	
 58

http://localhost:8080/stocks
http://localhost:8080/stocks
http://localhost:8080/stocks
http://localhost:8080/stocks

 Stock(id, symbol, Some(company))
 case Row(id: Int, symbol: String, None) =>
 Stock(id, symbol, None)
 }.toList
 }
}

Two case statements are needed because the company field may be null. If a
company name is found the first case statement is matched, but if it’s null the
second statement is matched.
A third approach uses the Anorm Parser API, which gives you a DSL that you can
use to define a RowParser to build a Stock object from each row:
import anorm._
import anorm.SqlParser._

// uses the Parser API
// stock is an instance of anorm.RowParser[models.Stock]
val stock = {
 get[Long]("id") ~
 get[String]("symbol") ~
 get[Option[String]]("company") map {
 case id~symbol~company => Stock(id, symbol, company)
 }
}

import play.api.db._
import play.api.Play.current

def selectAll(): List[Stock] = DB.withConnection { implicit c =>
 sqlQuery.as(stock *)
}

All three of these approaches return the same result, a List[Stock], so they
can be used interchangeably.
Here’s the complete source code for an app/models/Stock.scala file that shows all
three approaches, including all the necessary import statements:
package models

case class Stock (val id: Long,
 var symbol: String,
 var company: Option[String])

object Stock {

 import play.api.db._
 import play.api.Play.current

 // create a SqlQuery for all of the "select all" methods
 import anorm.SQL
 import anorm.SqlQuery
 val sqlQuery = SQL("select * from stocks order by symbol asc")

	
 59

 /**
 * SELECT * (VERSION 1)
 * ---
 */
 import play.api.Play.current
 import play.api.db.DB
 def selectAll1(): List[Stock] = DB.withConnection { implicit connection =>
 sqlQuery().map (row =>
 Stock(row[Long]("id"),
 row[String]("symbol"),
 row[Option[String]]("company"))
).toList
 }

 /**
 * SELECT * (VERSION 2)
 * ---
 */
 import anorm.Row
 def selectAll2() : List[Stock] = {
 DB.withConnection { implicit connection =>
 sqlQuery().collect {
 case Row(id: Int, symbol: String, Some(company: String)) =>
 Stock(id, symbol, Some(company))
 case Row(id: Int, symbol: String, None) =>
 Stock(id, symbol, None)
 case foo => println(foo)
 Stock(1, "FOO", Some("BAR"))
 }.toList
 }
 }

 /**
 * SELECT * (VERSION 3)
 * ---
 */
 import anorm._
 import anorm.SqlParser._

 // a parser that will transform a JDBC ResultSet row to a Stock value
 // uses the Parser API
 // http://www.playframework.org/documentation/2.0/ScalaAnorm
 val stock = {
 get[Long]("id") ~
 get[String]("symbol") ~
 get[Option[String]]("company") map {
 case id~symbol~company => Stock(id, symbol, company)
 }
 }

 import play.api.db._
 import play.api.Play.current
 // method requires 'val stock' to be defined
 def selectAll3(): List[Stock] = DB.withConnection { implicit c =>
 sqlQuery.as(stock *)
 }

	
 60

}

You can experiment with this code by cloning my Play Stocks project from
GitHub at https://github.com/alvinj/PlayStocksProject.

See Also
• The Play Framework “Accessing an SQL Database” page: http://

www.playframework.com/documentation/2.1.1/ScalaDatabase
• The Play Anorm page: http://www.playframework.com/documentation/2.1.1/

ScalaAnorm
• My Play Stocks project: https://github.com/alvinj/PlayStocksProject

12) Inserting Data into a Database with Anorm
Problem
You want to save data to a database using the built-in Play Framework “Anorm”
library.

Solution
Follow the “One-time configuration” steps from Recipe 11 to create a MySQL
stocks database and connect your Play project to it. You’ll also need the app/
controllers/Stocks.scala and app/models/Stock.scala files from that project. Then
follow these steps:
1. Create a data entry form (template) to let a user add a new stock
2. Add the necessary entries to the conf/routes file.
3. Create a Form in the Stocks controller to match the template.

4. Create methods in the Stocks controller to (a) display the form, and (b)
validate and accept it when it’s submitted.

5. Create an insert method in the Stock object in app/models/Stock.scala.

Create a data entry form
The data entry form for a Stock is simple, and is shown in Figure 12.

	
 61

https://github.com/alvinj/PlayStocksProject
https://github.com/alvinj/PlayStocksProject
http://www.playframework.com/documentation/2.1.1/ScalaDatabase
http://www.playframework.com/documentation/2.1.1/ScalaDatabase
http://www.playframework.com/documentation/2.1.1/ScalaDatabase
http://www.playframework.com/documentation/2.1.1/ScalaDatabase
http://www.playframework.com/documentation/2.1.1/ScalaAnorm
http://www.playframework.com/documentation/2.1.1/ScalaAnorm
http://www.playframework.com/documentation/2.1.1/ScalaAnorm
http://www.playframework.com/documentation/2.1.1/ScalaAnorm
https://github.com/alvinj/PlayStocksProject
https://github.com/alvinj/PlayStocksProject

Figure 12. The “Add Stock” form created in this recipe

	
 62

To create the template, create the app/views/stock folder if it doesn’t already exist.
Then create a form.scala.html template file in that folder with these contents:
@(stockForm: Form[Stock])

@import helper._

@main("Stocks") {

 @helper.form(action = routes.Stocks.submit) {

 <h1>Stock information</h1>

 @inputText(
 stockForm("symbol"),
 '_label -> "Symbol"
)

 @inputText(
 stockForm("company"),
 '_label -> "Company"
)

 <div class="actions">
 <input type="submit" class="btn primary" value="Insert">
 Cancel
 </div>

 }

}

This template (which compiles to a function) takes a Form[Stock] as a
parameter. The template calls the main wrapper template, as usual. The
@helper.form and @inputText fields are described in Recipes 8 through
10, but if you’ve used a templating system before, they probably look familiar.
@helper.form creates an HTML <form> element, and the @inputText
fields render HTML <input type="text"> fields.

When the form is submitted, the form action shows that it will be submitted to
the submit method in the Stocks controller class.

	
 63

Add two entries to the routes file
Next, when creating an “add” form like this, you need to add two entries to the
conf/routes file. Assuming you created the “list” action in Recipe 11, add the two
new lines at the end of this file:
GET /stocks controllers.Stocks.list

new
GET /stocks/add controllers.Stocks.add
POST /stocks controllers.Stocks.submit

With this configuration, the “add” form will appear at the /stocks/add URI, and
will be displayed by the add method of the Stocks controller. When the form is
submitted, it will be submitted with the POST method to the submit method of
the Stocks controller.

Create the Form in the controller
Next, you need a Play Form that maps to the fields in the form.scala.html
template:
// defines a mapping that will handle Stock values
val stockForm: Form[Stock] = Form(
 mapping(
 "symbol" -> nonEmptyText,
 "company" -> optional(text))
 ((symbol, company) => Stock(0, symbol, company))
 ((s: Stock) => Some((s.symbol, s.company)))
)

As mentioned in Recipe 11, the symbol field is required, so it’s defined as
nonEmptyText here. (Data for this field will be a String like AAPL.)

The two lines of code at the end of the form define apply and unapply
methods that are used to create a new Stock object from the form data, or
convert an existing Stock into use by a form, respectively:
((symbol, company) => Stock(0, symbol, company))
((s: Stock) => Some((s.symbol, s.company)))

Create the necessary controller class actions
With the Form in place, two actions are needed in the controller: an add method
to display the template, and a submit method to handle the form submission.

Here’s the complete code for the Stocks controller (app/controllers/
Stocks.scala), which includes these methods and the stockForm:
package controllers

import play.api._
import play.api.mvc._
import play.api.data._
import play.api.data.Forms._

	
 64

import play.api.data.validation.Constraints._
import views._
import models._

object Stocks extends Controller {

 // defines a mapping that will handle Stock values
 val stockForm: Form[Stock] = Form(
 mapping(
 "symbol" -> nonEmptyText,
 "company" -> optional(text))
 ((symbol, company) => Stock(0, symbol, company))
 ((s: Stock) => Some((s.symbol, s.company)))
)

 def list = Action {
 Ok(html.stock.list(Stock.selectAll3()))
 }

 /**
 * Display the 'add' form.
 */
 def add = Action {
 Ok(html.stock.form(stockForm))
 }

 /**
 * Handle form submission.
 */
 def submit = Action { implicit request =>
 stockForm.bindFromRequest.fold(
 errors => BadRequest(html.stock.form(errors)), // back to form
 stock => {
 // todo: this code assumes that Stock.save always succeeds
 val result = Stock.save(stock)
 println(s"INSERT succeeded, id = $result")
 Redirect(routes.Stocks.list)
 }
)
 }

}

Displaying the form with the add method is simple: just pass the stockForm to
the form.scala.html template in the app/views/stock folder while calling the Ok
method to display the template.
The submit method is also a Play Action. It takes an implicit request
variable, then attempts to bind the data the user submitted to the stockForm. If
this initial binding process succeeds -- the user input passes the form validations
-- the flow of control passes to the stock match in the fold method, where the
Stock.save method is called. Assuming that succeeds, the browser is
redirected to the list.scala.html template created in Recipe 11 by calling the list
method of the Stocks controller. If you didn’t copy the code from that recipe,

	
 65

redirect the user back to the form.scala.html template instead by calling the
controller’s add method.

If the binding process fails, the errors case in the fold method is invoked, and
form.scala.html is redisplayed using Play’s BadRequest method. Any errors --
such as not providing a stock symbol -- are displayed on the data entry form.
Notice that neither the stockForm nor the submit method attempt to
determine whether the given stock is already in the database. More robust
validation code is included in my GitHub project, which checks to see if a stock
exists in the database before attempting to insert it.

Create a Stock companion object
The final piece of the puzzle that’s needed is an Anorm save method in the
Stock companion object in the app/models/Stock.scala file:
object Stock {

 def save(stock: Stock): Option[Long] = {
 val id: Option[Long] = DB.withConnection { implicit c =>
 SQL("insert into stocks (symbol, company) values ({symbol}, {company})")
 .on('symbol -> stock.symbol.toUpperCase,
 'company -> stock.company
).executeInsert()
 }
 id
 }

}

Note that this is a normal SQL INSERT query, with some Anorm code wrapped
around it. If you’ve used a library like Spring JDBC, this may seem familiar.
The syntax in the on method refers to field names as 'symbol and 'company
is just one way to write this query. You can enclose the field names in double
quotes, if you prefer:
.on("symbol" -> stock.symbol.toUpperCase,
 "company" -> stock.company

Preceding a variable name with a single quote creates an instance
of a Symbol. See the Scala Symbol Scaladoc for more
information.

If, as in this example, you’re inserting data into a table that has an autogenerated
Long primary key (an auto_increment field in MySQL), executeInsert
returns the value of the id field. You can also use executeUpdate here. It
returns an Int indicating the number of fields affected, which is hopefully always
1 for an INSERT. This is good for SQL UPDATE queries, but I prefer to use
executeInsert, if possible.

	
 66

http://www.scala-lang.org/api/current/scala/Symbol.html
http://www.scala-lang.org/api/current/scala/Symbol.html

Note that this code does not include a try/catch block. As a result, it can throw a
MySQL integrity constraint violation if you attempt to insert a stock symbol that
already exists. You can see this in your browser by attempting to insert the same
stock symbol more than once.

Test the form
With all of this code in place, go to your browser and access the /stocks/add URI,
e.g. http://localhost:8080/stocks/add. Once your code is compiled, you should see
the form shown in Figure 12. When you enter valid data, the form submission
process should succeed, and redirect you to the /stocks URI, which was
implemented in Recipe 11. If you skipped that recipe, just redirect the form back
to itself.
If you leave the Symbol field blank and submit the form, the form submission
process will fail, and the form will be redisplayed, showing the error that the
Symbol field is a required field.

See Also
• My Play Stocks project: https://github.com/alvinj/PlayStocksProject

13) Deleting Records in a Database Table with
Anorm
Problem
You want to delete records in a database table using Anorm.

Solution
Assuming you followed the “One-time configuration” steps from Recipe 11 to
create a MySQL stocks database and connect your Play project to it, you can
use the following delete method in a Stock object in app/models/Stock.scala
to delete a record, given the primary key (id) of the stock to be deleted:
object Stock {
 def delete(id: Long): Int = {
 DB.withConnection { implicit c =>
 val numRowsDeleted = SQL("DELETE FROM stocks WHERE id = {id}")
 .on('id -> id)
 .executeUpdate()
 numRowsDeleted
 }
 }
}

	
 67

http://localhost:8080/stocks/add
http://localhost:8080/stocks/add
https://github.com/alvinj/PlayStocksProject
https://github.com/alvinj/PlayStocksProject

In this example a maximum of one record should be deleted, so
numRowsDeleted should be 1 (it succeeded) or 0 (it failed).

Ignoring error handling, this method can be called from a Stocks controller
(app/controllers/Stocks.scala) method like this:
def delete(id: Long) = Action {
 Stock.delete(id)
 Redirect(routes.Stocks.list)
}

In that example the code ignores the Int that is returned, but it can also be
handled:
def delete(id: Long) = Action {
 val numRowsDeleted = Stock.delete(id)
 // add logic based on numRowsDeleted ...
}

See Also
• My Play Stocks project includes all of the code needed to implement a

complete “delete” solution, including the route, template, controller, and
model code needed: https://github.com/alvinj/PlayStocksProject

14) Updating Records in a Database Table with
Anorm
Problem
You want to update records in a database table using Anorm.

Solution
Assuming you followed the “One-time configuration” steps from Recipe 11 to
create a MySQL stocks database and connect your Play project to it, write an
update method in your Stock object (the companion object in the app/models/
Stock.scala file). You can use the following update method to update records,
given the primary key (id) field and a new Stock object to replace the old one:
object Stock {
 def update(id: Long, stock: Stock): Boolean = {
 DB.withConnection { implicit c =>
 SQL("update stocks set symbol={symbol}, company={company} where id={id})")
 .on('symbol -> stock.symbol,
 'company -> stock.company,
 'id -> id
).executeUpdate() == 1
 }

	
 68

https://github.com/alvinj/PlayStocksProject
https://github.com/alvinj/PlayStocksProject

 }
}

The syntax that refers to the field names as 'symbol, 'company, and 'id in
the on method call is just one way to write this query. You can enclose the field
names in double quotes, if you prefer:
.on("symbol" -> stock.symbol,
 "company" -> stock.company,
 "id" -> id

Preceding a variable name with a single quote creates an instance
of a Symbol. See the Scala Symbol Scaladoc for more
information.

The executeUpdate method returns the number of rows affected by the query,
so in this case it should return a value of 1. If the result is 1, the method returns
true, otherwise it returns false.

See Also
• My Play Stocks project includes all of the code needed to implement a

complete “update” solution, including the route, template, controller, and
model code: https://github.com/alvinj/PlayStocksProject

15) Testing Queries Outside of Play
Problem
You want a simple, convenient way to test your Anorm SQL queries.

Solution
At least two developers have created approaches to let you test Anorm queries
outside of a full-blown Play application:
• Timothy Klim’s anorm-without-play project: https://github.com/

TimothyKlim/anorm-without-play
• HendraWijaya’s anorm-examples project: https://github.com/HendraWijaya/

anorm-examples

Both projects are normal SBT projects, so they’re easy to use. I cloned Timothy
Klim’s project, added the MySQL dependency to the libraryDependencies
field in the build.sbt file:
"mysql" % "mysql-connector-java" % "5.1.25"

deleted the Main.scala file that comes with the project:

	
 69

http://www.scala-lang.org/api/current/scala/Symbol.html
http://www.scala-lang.org/api/current/scala/Symbol.html
https://github.com/alvinj/PlayStocksProject
https://github.com/alvinj/PlayStocksProject
https://github.com/TimothyKlim/anorm-without-play
https://github.com/TimothyKlim/anorm-without-play
https://github.com/TimothyKlim/anorm-without-play
https://github.com/TimothyKlim/anorm-without-play
https://github.com/HendraWijaya/anorm-examples
https://github.com/HendraWijaya/anorm-examples
https://github.com/HendraWijaya/anorm-examples
https://github.com/HendraWijaya/anorm-examples

$ rm src/main/scala/Main.scala

and then created a file named StockQueriesTests.scala in the root directory of the
SBT project with these contents:
import java.sql.Connection
import scalikejdbc.ConnectionPool
import java.util.Date
import anorm._
import anorm.SqlParser._

object StockQueryTests extends App {

 Class.forName("com.mysql.jdbc.Driver")
 ConnectionPool.singleton("jdbc:mysql://localhost:8889/stocks",
 "root", "root")

 object DB {
 def withConnection[A](block: Connection => A): A = {
 val connection: Connection = ConnectionPool.borrow()
 try {
 block(connection)
 } finally {
 connection.close()
 }
 }
 }

 case class Stock (
 val id: Long,
 var symbol: String,
 var company: Option[String]
)

 // the DAO
 object Stock {

 // SELECT
 def selectAll() : List[Stock] = {
 DB.withConnection { implicit connection =>
 SQL("select * from stocks")().collect {
 case Row(id: Int, symbol: String, Some(company: String)) =>
 Stock(id, symbol, Some(company))
 case Row(id: Int, symbol: String, None) =>
 Stock(id, symbol, None)
 case foo => println("selectAll Error: Found something else: " +
foo)
 Stock(1, "FOO", Some("BAR"))
 }.toList
 }
 }

 // INSERT
 def save(stock: Stock) {
 DB.withConnection { implicit c =>
 SQL("insert into stocks (symbol, company) values ({symbol}, {company})")

	
 70

 .on('symbol -> stock.symbol,
 'company -> stock.company
).executeUpdate()
 }
 }

 // DELETE
 def delete(symbol: String): Int = {
 DB.withConnection { implicit c =>
 val nRowsDeleted = SQL("DELETE FROM stocks WHERE symbol = {symbol}")
 .on('symbol -> symbol)
 .executeUpdate()
 nRowsDeleted
 }
 }

 } // Stock

 // INSERT
 println("ADD NETFLIX:")
 Stock.save(Stock(0, "NFLX", Some("Netflix")))
 println(Stock.selectAll())

 // DELETE
 println("DELETE NETFLIX:")
 println(Stock.delete("NFLX"))
 println(Stock.selectAll())

}

Running this object with the sbt run command verifies that all of the queries
work as expected.
To make this more convenient, you can also run the sbt eclipse command to
generate the files needed for Eclipse, and then run your code through Eclipse.

Discussion
You can add SQL debugging to your project by adding the following
configuration lines to your project’s conf/application.conf file:
db.default.logStatements=true
logger.com.jolbox=DEBUG

Those lines tell Play to print the actual SQL statements that are executed when a
URL is accessed to the Play console.

	
 71

16) Deploying a Play Framework Project
Problem
You want to deploy your Play Framework project to a production environment.

Solution
There are several ways to deploy your Play application to a production server:
• Use the Play dist command to create a ZIP file with everything needed to

run your application.
• Get your project’s source code onto your production server, and “stage” it.

Both approaches are shown here.

Use the Play dist command
You can build a complete binary version of your application with the Play dist
command. To do this, start the Play command-line tool in the root directory of
your project, and then run the dist command:
[Finance] $ dist

(output omitted ...)
Your application is ready in dist/dist/finance-1.0-SNAPSHOT.zip

[success]

This creates a ZIP file that contains everything you need, including a start
command, README file, and all the JAR files needed to run the application.
To run your application on a production server, copy the ZIP file to the server,
unzip it, make the start command executable, and then run it. For example,
once you have a ZIP file, such as finance-1.0-SNAPSHOT.zip on a production
server, the process looks like this:
$ unzip finance-1.0-SNAPSHOT.zip

Archive: finance-1.0-SNAPSHOT.zip
 creating: finance-1.0-SNAPSHOT/
 creating: finance-1.0-SNAPSHOT/lib/
 inflating: finance-1.0-SNAPSHOT/lib/org.scala-lang.scala-library-2.10.0.jar
 inflating: finance-1.0-SNAPSHOT/lib/play.play_2.10-2.1.1.jar

 many lines of output skipped here ...

 inflating: finance-1.0-SNAPSHOT/lib/finance_2.10-1.0-SNAPSHOT.jar
 inflating: finance-1.0-SNAPSHOT/start
 inflating: finance-1.0-SNAPSHOT/README

$ cd finance-1.0-SNAPSHOT

	
 72

$ ls -al
total 16
drwxr-xr-x 5 Al staff 170 May 16 12:28 .
drwxr-xr-x 4 Al staff 136 May 16 12:30 ..
-rw-r--r-- 1 Al staff 151 Apr 2 20:25 README
drwxr-xr-x 56 Al staff 1904 May 16 12:28 lib
-rw-r--r-- 1 Al staff 3000 May 16 12:28 start

$ chmod +x start

$./start
Play server process ID is 14124
[info] play - database [default] connected at jdbc:mysql://localhost:8889/stocks
[info] play - Application started (Prod)
[info] play - Listening for HTTP on /0.0.0.0:9000

The start script is a simple shell script that executes a java command:
#!/usr/bin/env sh

exec java $* -cp "`dirname $0`/lib/*" play.core.server.NettyServer<?pdf-cr?>
`dirname $0`

As you can see from the script, you don’t even need Scala installed on your
production server, just Java. This makes it easy to deploy your application to all
sorts of application server environments, including your own servers as well as
servers from Heroku, Amazon, Google, and many more.

Stage the application
A second way to deploy your application to a production environment is to copy
your Play application’s source code to a production server, where you can run the
application by “staging” it. This lets you start the application from the operating
system command line, which also lets you automate the starting of the
application.
As a simple example, imagine that you’ve used Git or another tool to get your
application’s source code onto your production server. Once you’ve done that, run
the following play command from your operating system command line to stage
your application:
$ play clean compile stage

[info] Loading global plugins from /Users/Al/.sbt/plugins
[info] Loading project definition from project
[info] Updating
[info] Done updating.
[info] Compiling 9 Scala sources and 1 Java source to target/scala-2.10/
classes...
[success] Total time: 19 s
[info] Packaging target/scala-2.10/finance_2.10-1.0-SNAPSHOT-sources.jar ...
[info] Done packaging.
[info] Wrote scala-2.10/finance_2.10-1.0-SNAPSHOT.pom
[info] Generating Scala API documentation for main sources to

	
 73

 target/scala-2.10/api...
[info] Packaging target/scala-2.10/finance_2.10-1.0-SNAPSHOT.jar ...
[info] Done packaging.
[info] Scala API documentation generation successful.
[info] Packaging target/scala-2.10/finance_2.10-1.0-SNAPSHOT-javadoc.jar ...
[info] Done packaging.
[info]
[info] Your application is ready to be run in place: target/start
[info]
[success] Total time: 6 s, completed May 16, 2013 12:36:52 PM

As one of the last output lines indicates, you can now run your application from
the command line as target/start:
$ target/start

Play server process ID is 14365
[info] play - database [default] connected at jdbc:mysql://localhost:8889/stocks
[info] play - Application started (Prod)
[info] play - Listening for HTTP on /0.0.0.0:9000

I prefer using the dist approach, but staging the application can also be useful.

Discussion
If you want to run your application in production mode in your development or
test environments, you can run the application by using the start command
from the Play console prompt (instead of the run command):
[MyApp] $ start

(Starting server. Type Ctrl+D to exit logs, the server will remain in
background)

Play server process ID is 45566
[info] play - Application started (Prod)
[info] play - Listening for HTTP on port 9000...

According to the Play Production documentation, this is what happens when you
run the start command:

“When you run the start command, Play forks a new JVM and runs the
default Netty HTTP server. The standard output stream is redirected to the
Play console, so you can monitor its status. If you type Ctrl-D, the Play
console will quit, but the created server process will continue running in
background. The forked JVM’s standard output stream is then closed, and
logging can be read from the logs/application.log file. If you type Ctrl-C,
you will kill both JVMs: the Play console and the forked Play server.”

	
 74

Start command options
You can specify command-line options when issuing the start command. For
example, the following command starts the server on port 8080, while adjusting
the minimum and maximum JVM heap size:
$ start -Dhttp.port=8080 -Xms512M -Xmx1G

There are also several ways to specify which configuration file to use. By default,
Play uses the application.conf file it finds on the classpath, which by default is the
conf/application.conf file from your application. You can specify a file on the
local filesystem instead:
$ start -Dconfig.file=/myapp/conf/production.conf

The following command lets you load a production.conf file from the classpath:
$ start -Dconfig.resource=production.conf

If you keep that file in in your application’s conf directory, the Play start
command will find it. Otherwise, place it on your application’s classpath.
You can also load a configuration file from a URL:
$ start -Dconfig.url=http://foo.com/conf/production.conf

See the Play Configuration link in the See Also section for more options.
As noted in Recipe 1, you should never use the run command in production.
According to the Play website, for each server request, a complete check is
handled by SBT -- not something you want to have happen in a production
environment.

See Also
• Creating a standalone version of your application with dist: http://

www.playframework.com/documentation/2.1.1/ProductionDist
• Starting your application in production mode: http://

www.playframework.com/documentation/2.1.1/Production
• The Play Configuration page: http://www.playframework.com/documentation/

2.1.1/ProductionConfiguration

	
 75

http://www.playframework.com/documentation/2.1.1/ProductionDist
http://www.playframework.com/documentation/2.1.1/ProductionDist
http://www.playframework.com/documentation/2.1.1/ProductionDist
http://www.playframework.com/documentation/2.1.1/ProductionDist
http://www.playframework.com/documentation/2.1.1/Production
http://www.playframework.com/documentation/2.1.1/Production
http://www.playframework.com/documentation/2.1.1/Production
http://www.playframework.com/documentation/2.1.1/Production
http://www.playframework.com/documentation/2.1.1/ProductionConfiguration
http://www.playframework.com/documentation/2.1.1/ProductionConfiguration
http://www.playframework.com/documentation/2.1.1/ProductionConfiguration
http://www.playframework.com/documentation/2.1.1/ProductionConfiguration

17) Handling 404 and 500 Errors
Problem
You need to handle HTTP 404 and 500 errors in your application.

Solution
To handle 404 and 500 errors, create an object that extends the
GlobalSettings trait, and override the necessary methods. To do this, create
a file named Global.scala in your application’s app directory with these contents:
import play.api._
import play.api.mvc._
import play.api.mvc.Results._

object Global extends GlobalSettings {

 // called when a route is found, but it was not possible to bind
 // the request parameters
 override def onBadRequest(request: RequestHeader, error: String) = {
 BadRequest("Bad Request: " + error)
 }

 // 500 - internal server error
 override def onError(request: RequestHeader, throwable: Throwable) = {
 InternalServerError(views.html.errors.onError(throwable))
 }

 // 404 - page not found error
 override def onHandlerNotFound(request: RequestHeader): Result = {
 NotFound(views.html.errors.onHandlerNotFound(request))
 }

}

The method views.html.errors.onError(throwable) refers to a Play
template file I named onError.scala.html, and placed in my app/views/errors
folder:
@(throwable: Throwable)

@main("500 - Internal Server Error") {

 <h1>500 - Internal Server Error</h1>
 <p>@throwable.getMessage</p>

}

(Create the app/views/errors folder if it doesn’t already exist.)

	
 76

You can customize that code as desired, just like any other Play template.
The method views.html.errors.onHandlerNotFound(request)
refers to a Play template file named onHandlerNotFound.scala.html, which is also
in the app/views/errors folder. A simple version of that file looks like this:

@(request: RequestHeader)

@main("404 - Not Found") {

 <h1>404 - Not Found</h1>
 <p>You requested: @request.path</p>

}

Again, you can customize this template file as desired.

Discussion
As shown in the Application global settings page on the Play website, you can use
this Global object for other purposes. For instance, the page demonstrates how
to override the onStart and onStop methods of the GlobalSettings class
to get a notice of when the application starts and stops:
import play.api._

object Global extends GlobalSettings {

 override def onStart(app: Application) {
 Logger.info("Application has started")
 }

 override def onStop(app: Application) {
 Logger.info("Application shutdown...")
 }

}

The Zentasks application that ships as a sample program with the Play distribution
uses the onStart method to populate sample data for an application. You can
find that application in the samples/scala directory of the Play distribution.

See Also
• Play application global settings: http://www.playframework.com/

documentation/2.1.1/ScalaGlobal
• The GlobalSettings trait: http://www.playframework.com/

documentation/api/2.1.1/scala/index.html#play.api.GlobalSettings

	
 77

http://www.playframework.com/documentation/2.1.1/ScalaGlobal
http://www.playframework.com/documentation/2.1.1/ScalaGlobal
http://www.playframework.com/documentation/2.1.1/ScalaGlobal
http://www.playframework.com/documentation/2.1.1/ScalaGlobal
http://www.playframework.com/documentation/2.1.1/ScalaGlobal
http://www.playframework.com/documentation/2.1.1/ScalaGlobal
http://www.playframework.com/documentation/api/2.1.1/scala/index.html
http://www.playframework.com/documentation/api/2.1.1/scala/index.html
http://www.playframework.com/documentation/api/2.1.1/scala/index.html
http://www.playframework.com/documentation/api/2.1.1/scala/index.html

A) Play Commands
This section lists commands that you can run from the Play command line.
Create a new Play project like this:
$ play new HelloWorld

Reply to the prompts, and that command creates a new HelloWorld directory that
contains your initial application files.
Start the Play console from your operating system command line like this:
$ play

Starting the Play server
Start the Play server from your operating system command line in either of these
ways:
$ play run

$ play "run 8080"

$ play debug "run 8080"

The first command starts Play on port 9000; the second command starts it on port
8080; the third command starts it on port 8080 with a JPDA debug port.
These start command options are described in Recipe 16:
$ start -Dhttp.port=8080 -Xms512M -Xmx1G

$ start -Dconfig.file=/myapp/conf/production.conf

$ start -Dconfig.resource=production.conf

$ start -Dconfig.url=http://foo.com/conf/production.conf

	
 78

http://foo.com/conf/production.conf
http://foo.com/conf/production.conf

Play command reference
The next table shows the most common commands that can be run from the Play
console.

Command Description

clean Run from the Play console or command prompt. “Deletes
files produced by the build, such as generated sources,
compiled classes, and task caches.”

clean-all “Force clean.” Use if you think the SBT cache is corrupt.
Run from the operating system command line.

compile Compile your application without running the server.

console Open a REPL session with your code pre-loaded.

dist Create a ZIP file with everything needed to run your
application.

doc Created Scaladoc from your project files.

eclipse Create the .project and .classpath files for Eclipse.

help
help play

Show different types of “help” information.

idea Create the file needed by IntelliJ IDEA.

run Run your application on port 9000.

run 8888 Run your application on port 8888 (or any other port you
specify).

stage First, copy your code to a production server. Then run this
command to generate a target/start script your can use to
run your application.

start Run your application in “production mode”.

test Run your unit tests.

Because the play command uses SBT, you can also use all of the usual SBT
commands.

	
 79

B) JSON Reference
This section contains a collection of notes about JSON processing in the Play
Framework. This section is a work in progress.

JSON Data Types
The Play JSON library has a main JsValue type, with the following sub-types:
1) JsObject

2) JsNull

3) JsBoolean

4) JsNumber

5) JsArray (a sequence of types; can be heterogeneous)
6) JsString

7) JsUndefined

Creating JSON from Scala types
Examples of how to create JSON strings from Scala data types:
// import JsObject, JsValue, etc.
import play.api.libs.json._

val name = JsString("foo") // String
val number = JsNumber(100) // Integer
val number = Json.toJson(Some(100)) // Some

// Map (1)
val map = Map("1" -> "a", "2" -> "b")
val json = Json.toJson(map)

// Map (2)
val personAsJsonObject = Json.toJson(
 Map(
 "first_name" -> "John",
 "last_name" -> "Doe"
)
)

	
 80

Creating Scala objects from JSON strings
Examples of how to create Scala objects from JSON strings:
TBD. For the moment, see the “reads and writes” example on the following
pages.

Play methods that return JSON objects
Examples of Play Framework Action methods that return JSON:
// converts a Seq to Json
def json = Action {
 import play.api.libs.json.Json
 val names = Seq("Aleka", "Christina", "Emily", "Hannah")
 Ok(Json.toJson(names))
}

// TODO show what the output from this method looks like

Common Play JSON methods
Common Play Framework JSON methods:

Method Description
Json.toJson Convert a Scala object to a JsValue (using Writes)

Json.fromJson Convert a JsValue to a Scala object (using Reads)

Json.parse Parse a String to a JsValue

Json.obj() Simple syntax to create a JsObject

Json.arr() Simple syntax to create a JsArray

Json.stringify Convert a JsValue to a String

Json.prettyPrint Convert a JsValue to a String with a “pretty
printer” (nicely formatted)

	
 81

A Play JSON “reads” and “writes” example
When converting between JSON and Scala objects, create a Format object along
with your model code. For instance, this is a sample model for a Note class,
which consists of title and note fields:
// models/Note.scala

package models

case class Note (
 var title: String,
 var note: String
)

object Note {

 import play.api.libs.json._

 implicit object NoteFormat extends Format[Note] {

 // from JSON string to a Note object (de-serializing from JSON)
 def reads(json: JsValue): JsResult[Note] = {
 val title = (json \ "title").as[String]
 val note = (json \ "note").as[String]
 JsSuccess(Note(title, note))
 }

 // convert from Note object to JSON (serializing to JSON)
 def writes(n: Note): JsValue = {
 // JsObject requires Seq[(String, play.api.libs.json.JsValue)]
 val noteAsList = Seq("title" -> JsString(n.title),
 "note" -> JsString(n.note))
 JsObject(noteAsList)
 }

 }

}

(this space intentionally left blank)

	
 82

The following controller code corresponds to the model code on the previous
page:
// controllers/Notes.scala

package controllers

import play.api.mvc._
import play.api.data._
import play.api.data.Forms._
import models._
import scala.collection.mutable.ArrayBuffer

object Notes extends Controller {

 val n1 = Note("To-Do List", "Wake up\nMake coffee\nOpen eyes")
 val n2 = Note("Grocery List", "Food\nDrinks\nOther")
 val notes = ArrayBuffer(n1, n2)

 val noteForm: Form[Note] = Form(
 mapping(
 "title" -> text,
 "note" -> text
)((title, note) => Note(title, note)) // Form -> Note
 ((note: Note) => Some(note.title, note.note)) // Note -> Form
)

 // display the 'notes' sequence as Json
 def listAsJson = Action {
 import play.api.libs.json.Json
 Ok(Json.toJson(notes)) // uses 'writes' method
 }

 // add a Json 'note' to our sequence of notes
 def addNote = Action { request =>
 val json = request.body.asJson.get
 val note = json.as[Note] // uses 'reads' method
 // TODO save to the database
 notes += note
 Ok
 }

}

	
 83

About the Author

Alvin Alexander grew up in northern Illinois, and after touring several different
colleges, graduated with a B.S. Degree in Aerospace Engineering from Texas
A&M University. After working in the aerospace field for a few years, he taught
himself C, Unix, Java, OOP, etc. He then founded a software consulting business,
and sold it less than ten years later. After that, he moved to Alaska and meditated
in the mountains for a while. After moving back to the “Lower 48”, he now lives
just outside of Boulder, Colorado.
In addition to the Scala Cookbook, Mr. Alexander has also written “How I Sold
My Business (A Personal Diary),” and “Zen & the Art of Consulting”:

He currently owns and operates two businesses:
• Valley Programming (his new software consulting business)
• The Zen Foundation, dedicated to making Zen books freely available

If you found this booklet helpful, you may also enjoy his Scala Cookbook, which
is available at O’Reilly, Amazon.com, and other locations:

	
 84

http://alvinalexander.com
http://alvinalexander.com
http://shop.oreilly.com/product/0636920026914.do
http://shop.oreilly.com/product/0636920026914.do
http://www.amazon.com/How-Sold-My-Business-ebook/dp/B007GFCZ4G/
http://www.amazon.com/How-Sold-My-Business-ebook/dp/B007GFCZ4G/
http://www.amazon.com/How-Sold-My-Business-ebook/dp/B007GFCZ4G/
http://www.amazon.com/How-Sold-My-Business-ebook/dp/B007GFCZ4G/
http://www.amazon.com/Zen-Art-Consulting-ebook/dp/B00DBHHC7I/
http://www.amazon.com/Zen-Art-Consulting-ebook/dp/B00DBHHC7I/
http://ValleyProgramming.com
http://ValleyProgramming.com
http://ZenFoundation.org
http://ZenFoundation.org
http://shop.oreilly.com/product/0636920026914.do
http://shop.oreilly.com/product/0636920026914.do
http://www.amazon.com/Scala-Cookbook-Alvin-Alexander/dp/1449339611/
http://www.amazon.com/Scala-Cookbook-Alvin-Alexander/dp/1449339611/

