

Hello, Scala

Alvin Alexander

Learn Scala fast
with small, easy lessons

Copyright

Hello, Scala

Copyright 2018 Alvin J. Alexander1

All rights reserved. No part of this book may be reproduced without prior written
permission from the author.

This book is presented solely for educational purposes. While best efforts have been
made to prepare this book, the author makes no representations or warranties of any
kind and assumes no liabilities of any kindwith respect to the accuracy or completeness
of the contents, and specifically disclaims any implied warranties of merchantability or
fitness of use for a particular purpose. The author shall not be held liable or responsible
to any person or entity with respect to any loss or incidental or consequential damages
caused, or alleged to have been caused, directly or indirectly, by the information or
programs contained herein. Any use of this information is at your own risk.

Version 1.0, published September 3, 2018

Book errata can be found at alvinalexander.com/hello-scala2

Other books by Alvin Alexander:

• Functional Programming, Simplified3

• Scala Cookbook4

1https://alvinalexander.com
2https://alvinalexander.com/hello-scala
3https://kbhr.co/hs-fps
4https://kbhr.co/hs-cook

https://alvinalexander.com
https://alvinalexander.com/hello-scala
https://kbhr.co/hs-fps
https://kbhr.co/hs-cook
https://alvinalexander.com
https://alvinalexander.com/hello-scala
https://kbhr.co/hs-fps
https://kbhr.co/hs-cook

Contents

1 Preface 1

2 Prelude: A Taste of Scala 3

3 The Scala Programming Language 17

4 Hello, World 19

5 Hello, World (Version 2) 23

6 The Scala REPL 25

7 Two Types of Variables 29

8 The Type is Optional 33

9 A Few Built-In Types 35

10 Two Notes About Strings 37

11 Command-Line I/O 41

12 Control Structures 43

13 The if/then/else Construct 45

14 for and while Loops 47

15 for Expressions 51

16 match Expressions 55

CONTENTS

17 try/catch/finally Expressions 63

18 Classes 65

19 Auxiliary Class Constructors 71

20 Supplying Default Values for Constructor Parameters 73

21 A First Look at Methods 75

22 Enumerations (and a Complete Pizza Class) 81

23 Traits and Abstract Classes 87

24 Using Traits as Interfaces 89

25 Using Traits Like Abstract Classes 93

26 Abstract Classes 99

27 Collections Classes 103

28 ArrayBuffer Class 105

29 List Class 109

30 Vector Class 113

31 Map Class 115

32 Set Class 119

33 Anonymous Functions 123

34 Common Methods on Sequences 129

35 Common Map Methods 137

36 A Few Miscellaneous Items 141

CONTENTS

37 Tuples 143

38 Scala and Swing 147

39 An OOP Example 149

40 A Scala + JavaFX Example 155

41 SBT and ScalaTest 157

42 The Scala Build Tool (SBT) 159

43 Using ScalaTest with SBT 165

44 Writing BDD-style tests with ScalaTest and SBT 171

45 Functional Programming 175

46 Pure Functions 177

47 Passing Functions Around 181

48 No Null Values 185

49 Companion Objects 195

50 Case Classes 203

51 Case Objects 209

52 Functional Error Handling 213

53 Concurrency 217

54 Akka Actors 219

55 Akka Actor Examples 225

56 Futures 235

CONTENTS

57 Summary 245

1
Preface

Have you ever fallen in love with a programming language? I still remember when I
first saw the book,The C Programming Language, and how I fell in love with its simple
syntax and the ability to interact with a computer at a low level. In 1996 I loved Java
because it made OOP simple. A few years later I found Ruby and loved its elegance.

Then in 2011 I was aimlessly wandering around Alaska and stumbled across the book,
Programming in Scala, and I was stunned by its remarkable marriage of Ruby and Java:

• The syntax was as elegant and concise as Ruby
• It feels dynamic, but it’s statically typed
• It compiles to class files that run on the JVM
• You can use the thousands of Java libraries in existence with your Scala code

In the first edition of the book, Beginning Scala, David Pollak states that Scala will
change the way you think about programming, and that’s a good thing. Learning Scala
has not only been a joy, but it’s ledme on a journey to appreciate concepts like modular
programming, immutability, referential transparency, and functional programming,
and most importantly, how those ideas help to dramatically reduce bugs in my code.

1.1 Is Scala DICEE?

DICEE is an acronym that was coined by Guy Kawasaki, who became famous as a de-
veloper evangelist for the original Apple Macintosh team. He says that great products
are DICEE, meaning Deep, Indulgent, Complete, Elegant, and Emotive:

• Deep: The product doesn’t run out of features and functionality after a fewweeks
of use. Its creators have anticipated what you’ll need once you come up to speed.
As your demands get more sophisticated, you won’t need a different product.

• Indulgent: A great product is a luxury. It makes you feel special when you buy it
(and use it).

1

2 CHAPTER 1. PREFACE

• Complete: A great product ismore than a physical thing. Documentation counts.
Customer service counts. Tech support counts.

• Elegant: A great product has an elegant user interface. Things work the way
you’d think they would. A great product doesn’t fight you, it enhances you.

• Emotive: A great product incites you to action. It is so deep, indulgent, complete,
and elegant that it compels you to tell other people about it. You’re bringing the
good news to help others, not yourself.

Two years after discovering Scala — way back in 2013 — I came to the conclusion that
it meets the definition of DICEE, and I think it’s just as true today:

• Scala is deep: After all these years I continue to learn new techniques to write
better code.

• Scala is indulgent: Just like Ruby, I feel special and fortunate to use a language
that’s so well thought out.

• Scala is complete: The documentation is excellent, terrific frameworks exist, and
the support groups are terrific.

• Scala is elegant: Once you grasp its main concepts you’ll fall in love with how it
works just like you expect it to.

• Scala is emotive: Everyone who works with it wants to tell you how special it is.
Myself, I had never written a programming book in my life, but by 2012 I was
eagerly mailing people at O’Reilly to tell them how much I wanted to write the
Scala Cookbook1.

As I write this book many years later I hope to share not just the nuts and bolts of the
Scala language, but also its elegance and the joy of using it.

Alvin Alexander
https://alvinalexander.com

1http://kbhr.co/hs-cook

http://kbhr.co/hs-cook
http://kbhr.co/hs-cook

2
Prelude: A Taste of Scala

My hope in this book is to demonstrate that Scala1 is a beautiful, modern, expressive
programming language. To get started with that, in this first chapter I jump right in
and provide a whirlwind tour of Scala’s main features in about ten pages. After the tour,
the book continues with a more traditional “Getting Started” chapter.

In this book I assume that you’ve used a language like C or Java before,
and are ready to see a series of Scala examples to get a feel for the lan-
guage. Although it’s not 100% necessary, it will also help if you’ve already
downloaded and installed Scala2 so you can test the examples as you go
along.

2.1 Overview

Before we jump into the examples, here are a few important things to know about Scala:

• It’s a high-level language
• It’s statically typed
• Its syntax is concise but still readable — we call it expressive
• It supports the object-oriented programming (OOP) paradigm
• It supports the functional programming (FP) paradigm
• It has a sophisticated type inference system
• It has traits, which are a combination of interfaces and abstract classes that can

be used as mixins, and support a modular programming style
• Scala code results in .class files that run on the Java Virtual Machine (JVM)
• It’s easy to use Java libraries in Scala

1http://scala-lang.org/
2https://www.scala-lang.org/download/

3

http://scala-lang.org/
https://www.scala-lang.org/download/
http://scala-lang.org/
https://www.scala-lang.org/download/

4 CHAPTER 2. PRELUDE: A TASTE OF SCALA

2.2 Hello, world

Ever since the book, The C Programming Language3, it’s been a tradition to begin
programming books with a “Hello, world” example, and not to disappoint, this is one
way to write that example in Scala:

object Hello extends App {
println("Hello, world")

}

After you save that code to a file named Hello.scala you can compile it with scalac:

$ scalac Hello.scala

scalac is just like javac, and that command creates two files:

• Hello$.class

• Hello.class

These are the same “.class” bytecode files you create with javac, and they’re ready to
run in the JVM. You run the Hello application with the scala command:

$ scala Hello

I share more “Hello, world” examples in the lessons that follow, so I’ll leave that intro-
duction as is for now.

2.3 The Scala REPL

The Scala REPL (“Read-Evaluate-Print-Loop”) is a command-line interpreter that you
use as a “playground” area to test your Scala code. I introduce it early here so you can
use it with the code examples that follow.

To start a REPL session, just type scala at your operating system command line, and
you’ll see something like this:

3http://amzn.to/2CsDmYa

http://amzn.to/2CsDmYa
http://amzn.to/2CsDmYa

2.4. TWO TYPES OF VARIABLES 5

$ scala
Welcome to Scala 2.12.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_131).
Type in expressions for evaluation. Or try :help.

scala> _

Because the REPL is a command-line interpreter, it sits there waiting for you to type
something. Inside the REPL you type Scala expressions to see how they work:

scala> val x = 1
x: Int = 1

scala> val y = x + 1
y: Int = 2

As those examples show, after you type an expression, the REPL shows the result of the
expression on the line following the prompt.

2.4 Two types of variables

Scala has two types of variables:

• val is an immutable variable — like final in Java — and should be preferred

• var creates a mutable variable, and should only be used when there is a specific
reason to use it

Examples:

val x = 1 //immutable
var y = 0 //mutable

2.5 Implicit and explicit variable types

In Scala, you typically create variables without declaring their type:

val x = 1
val s = "a string"
val p = new Person("Kimberly")

6 CHAPTER 2. PRELUDE: A TASTE OF SCALA

This is known as an implicit type style.

You can also explicitly declare a variable’s type, but that’s not usually necessary:

val x: Int = 1
val s: String = "a string"
val p: Person = new Person("Kimberly")

Because showing a variable’s type like that isn’t necessary — and actually feels need-
lessly verbose — I rarely use this explicit syntax. (I explain when I use it later in the
book.)

2.6 Testing object equality

In Scala everything is an object, and you use == to test object equality:

val a = "foo"
val b = "foo"
a == b // true

case class Store(name: String)
val a = Store("Flowers By Hala")
val b = Store("Flowers By Hala")
a == b // true

2.7 Control structures

Here’s a quick tour of Scala’s control structures.

2.7.1 if/else

Scala’s if/else control structure is similar to other languages:

if (test1) {
doA()

} else if (test2) {
doB()

2.7. CONTROL STRUCTURES 7

} else if (test3) {
doC()

} else {
doD()

}

The if/else construct is an expression that returns a value, so you can also use it as a
ternary operator:

val x = if (a < b) a else b

2.7.2 match expressions

Scala has a match expression, which in itsmost basic use is like a Java switch statement:

val result = i match {
case 1 => "one"
case 2 => "two"
case _ => "not 1 or 2"

}

As shown, the _ case is a catch-all case that handles any pattern that isn’t matched by
the previous case statements.

The match expression isn’t limited to just integers, it can be used with any data type.
Here it’s used with a Boolean variable named bool:

val booleanAsString = bool match {
case true => "true"
case false => "false"

}

Here’s an example of match being used as the body of a method, and matching against
many different types:

8 CHAPTER 2. PRELUDE: A TASTE OF SCALA

def getClassAsString(x: Any): String = x match {
case s: String => s + " is a String"
case i: Int => "Int"
case f: Float => "Float"
case l: List[_] => "List"
case p: Person => "Person"
case _ => "Unknown"

}

Powerful match expressions are a big feature of Scala.

2.7.3 try/catch

Scala’s try/catch control structure lets you catch exceptions. It’s similar to Java, but its
syntax is consistent with match expressions:

try {
writeToFile(text)

} catch {
case fnfe: FileNotFoundException => println(fnfe)
case ioe: IOException => println(ioe)

}

2.7.4 for loops and expressions

Scala for loops — which I refer to in this book as for-loops — look like this:

for (arg <- args) println(arg)

// "x to y" syntax
for (i <- 0 to 5) println(i)

// "x to y by" syntax
for (i <- 0 to 10 by 2) println(i)

2.8. CLASSES 9

You can also add the yield keyword to for-loops to create for-expressions that yield a
result. Here’s a for-expression that doubles each value in the sequence 1 to 3:

val x = for (i <- 1 to 3) yield i * 2 //yields Vector(2, 4, 6)

Here’s another for-expression that iterates over a list of strings:

val fruits = List("apple", "banana", "lime", "orange")

val fruitLengths = for {
f <- fruits
if f.length > 4

} yield f.length

Because Scala code generally just makes sense, I’ll imagine that you can guess how that
code works, even if you’ve never seen a for-expression or Scala List until now.

Scala also has while and do/while loops, but I rarely use them.

2.8 Classes

Here’s an example of a Scala class:

class Person(var firstName: String, var lastName: String) {
def printFullName() {

println(s"$firstName $lastName")
}

}

Here’s an example of how to use that class:

val p = new Person("Julia", "Kern")
println(p.firstName) //Julia

p.lastName = "Manes"
p.printFullName() //Julia Manes

Notice that there’s no need to create “get” and “set” methods to access the fields in the
class.

10 CHAPTER 2. PRELUDE: A TASTE OF SCALA

As a more complicated example, here’s a Pizza class that you’ll see later in the book:

class Pizza (
var crustSize: CrustSize,
var crustType: CrustType,
val toppings: ArrayBuffer[Topping]

) {
def addTopping(t: Topping): Unit = { toppings += t }
def removeTopping(t: Topping): Unit = { toppings -= t }
def removeAllToppings(): Unit = { toppings.clear() }

}

In that code, an ArrayBuffer is like Java’s ArrayList. I don’t show the CrustSize,
CrustType, and Topping classes, but I suspect that you can understand how that code
works without needing to see those classes.

2.9 Scala methods

Just like other OOP languages, Scala classes have methods, and this is what Scala’s
method syntax looks like:

def sum(a: Int, b: Int): Int = a + b
def concatenate(s1: String, s2: String): String = s1 + s2

You don’t have to declare a method’s return type, so it’s perfectly legal to write those
two methods like this, if you prefer:

def sum(a: Int, b: Int) = a + b
def concatenate(s1: String, s2: String) = s1 + s2

This is how you call those methods:

val x = sum(1, 2)
val y = concatenate("foo", "bar")

There are more things you can do with methods, such as providing default values for
method parameters, but that’s a good start for now.

2.10. TRAITS 11

2.10 Traits

Traits in Scala are a lot of fun, and they also let you break your code down into small,
modular units. To demonstrate traits, here’s an example from later in the book. Given
these three traits:

trait Speaker {
def speak(): String // has no body, so it’s abstract

}

trait TailWagger {
def startTail(): Unit = { println("tail is wagging") }
def stopTail(): Unit = { println("tail is stopped") }

}

trait Runner {
def startRunning(): Unit = { println("I'm running") }
def stopRunning(): Unit = { println("Stopped running") }

}

You can create a Dog class that extends all of those traits while providing behavior for
the speak method:

class Dog(name: String) extends Speaker with TailWagger with Runner {
def speak(): String = "Woof!"

}

Similarly, here’s a Cat class that shows how to override trait methods:

class Cat extends Speaker with TailWagger with Runner {
def speak(): String = "Meow"
override def startRunning(): Unit = { println("Yeah ... I don't run") }
override def stopRunning(): Unit = { println("No need to stop") }

}

If that code makes sense — great, you’re comfortable with traits! If not, don’t worry, I
explain them in detail later in the book.

12 CHAPTER 2. PRELUDE: A TASTE OF SCALA

2.11 Collections classes

Based onmy own experience, here’s an important rule to know about Scala’s collections
classes:

If you’re coming to Scala from Java, forget what you know about Java’s
collections classes, and use the Scala collections classes.

You can use the Java collections classes in Scala, and I did so for several months, but
when youdo that you’re slowing downyour own learning process. TheScala collections
classes offer many powerful methods that you’ll want to start using ASAP.

2.11.1 Populating lists

There are times when it’s helpful to create sample lists that are populated with data, and
Scala offers many ways to populate lists. Here are just a few:

val nums = List.range(0, 10)
val nums = 1 to 10 by 2 toList
val letters = ('a' to 'f').toList
val letters = ('a' to 'f') by 2 toList

2.11.2 Sequence methods

While there are many sequential collections classes you can use, let’s look at some ex-
amples of what you can do with the Scala List class. Given these two lists:

val nums = (1 to 10).toList
val names = List("joel", "ed", "chris", "maurice")

This is the foreach method:

scala> names.foreach(println)
joel
ed
chris
maurice

2.11. COLLECTIONS CLASSES 13

Here’s the filter method, followed by foreach:

scala> nums.filter(_ < 4).foreach(println)
1
2
3

Here are some examples of the map method:

scala> val doubles = nums.map(_ * 2)
doubles: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

scala> val capNames = names.map(_.capitalize)
capNames: List[String] = List(Joel, Ed, Chris, Maurice)

scala> val lessThanFive = nums.map(_ < 5)
lessThanFive: List[Boolean] = List(true, true, true, true, false, false, false,
false, false, false)

Even though I didn’t explain it, you can see how mapworks: It applies an algorithm you
supply to every element in the collection, returning a new, transformed value for each
element.

If you’re ready to see one of the most powerful collections methods, here’s reduce:

scala> nums.reduce(_ + _)
res0: Int = 55

scala> nums.reduce(_ * _)
res1: Int = 3628800

Even though I didn’t explain reduce, you can guess that the first example yields the
sum of the numbers in nums, and the second example returns the product of all those
numbers.

There are many (many!) more methods available to Scala collections classes, but hope-
fully this gives you an idea of their power.

14 CHAPTER 2. PRELUDE: A TASTE OF SCALA

There’s somuchpower in the Scala collections class, I spendover 100 pages
discussing them in the Scala Cookbook4.

2.12 Tuples

Tuples let you put a heterogenous collection of elements in a little container. Tuples can
contain between two and 22 variables, and they can all be different types. For example,
given a Person class like this:

class Person(var name: String)

You can create a tuple that contains three different types like this:

val t = (11, "Eleven", new Person("Eleven"))

You can access the tuple values by number:

t._1 // 11
t._2 // "Eleven"
t._3 // Person("Eleven")

Or assign the tuple fields to variables:

val(num, string, person) = (11, "Eleven", new Person("Eleven"))

I don’t overuse tuples, but they’re nice for those times when you need to put a little
“bag” of things together for a little while.

2.13 What I haven’t shown

While that was a whirlwind introduction to Scala in about ten pages, there are many
features I haven’t shown yet, including:

• Strings and built-in numeric types
• Packaging and imports

4http://kbhr.co/hs-cook

http://kbhr.co/hs-cook
http://kbhr.co/hs-cook

2.14. A BIT OF BACKGROUND 15

• How to use Java collections classes in Scala
• How to use Java libraries in Scala
• How to build Scala projects
• How to perform unit testing in Scala
• How to write Scala shell scripts
• Maps, Sets, and other collections classes
• Object-oriented programming
• Functional programming
• Concurrency with Futures and Akka
• More …

If you like what you’ve seen so far, I hope you’ll like the rest of the book.

2.14 A bit of background

Scala was created byMartinOdersky5, who studied underNiklausWirth6, who created
Pascal and several other languages. Mr. Odersky is one of the co-designers of Generic
Java, and is also known as the “father” of the javac compiler.

5https://en.wikipedia.org/wiki/Martin_Odersky
6https://en.wikipedia.org/wiki/Niklaus_Wirth

https://en.wikipedia.org/wiki/Martin_Odersky
https://en.wikipedia.org/wiki/Niklaus_Wirth
https://en.wikipedia.org/wiki/Martin_Odersky
https://en.wikipedia.org/wiki/Niklaus_Wirth

16 CHAPTER 2. PRELUDE: A TASTE OF SCALA

3
The Scala Programming Language

The name Scala comes from the word scalable, and true to that name, it’s used to
power the busiest websites in the world, including Twitter, Netflix, Tumblr, LinkedIn,
Foursquare, and many more.

Here are a few more nuggets about Scala:

• It’s a modern programming language created by Martin Odersky1, and influ-
enced by Java, Ruby, Standard ML, Pizza2, Lisp, Haskell, OCaml, and others.

• It’s a high-level language.
• It’s statically typed.
• It has a sophisticated type inference system.
• It’s syntax is concise but still readable — we call it expressive.
• It’s a pure object-oriented programming (OOP) language. Every variable is an

object, and every “operator” is a method.
• It’s also a functional programming (FP) language, so functions are also variables,

and you can pass them into other functions. You can write your code usingOOP,
FP, or combine them in a hybrid style.

• Scala source code compiles to “.class” files that run on the JVM.
• Scala also works extremely well with the thousands of Java libraries that have

been developed over the years.
• The Akka library3 provides an Actors API, which was originally based on the

actors concurrency model built into Erlang.
• The Play Framework4 is a lightweight, stateless, web development framework

1https://twitter.com/odersky
2https://en.wikipedia.org/wiki/Pizza_(programming_language)
3https://akka.io
4https://www.playframework.com/

17

https://twitter.com/odersky
https://en.wikipedia.org/wiki/Pizza_(programming_language)
https://akka.io
https://www.playframework.com/
https://twitter.com/odersky
https://en.wikipedia.org/wiki/Pizza_(programming_language)
https://akka.io
https://www.playframework.com/

18 CHAPTER 3. THE SCALA PROGRAMMING LANGUAGE

that’s built with Scala and Akka. (In addition to Play there are several other
popular web frameworks.)

• A great thing about Scala is that you can be productive with it on Day 1, but it’s
also a deep language, so as you go along you’ll keep learning, and finding newer,
better ways to write code. It’s said that Scala will change the way you think about
programming (and that’s a good thing).

• Of all of Scala’s benefits, what I like best is that it lets you write concise, readable
code. The time a programmer spends reading code compared to the time spent
writing code is said to be at least a 10:1 ratio, so writing code that’s concise and
readable is a big deal. Because Scala has these attributes, programmers say that
it’s expressive.

4
Hello, World

Let’s look at the “Hello, world” example again:

object Hello {
def main(args: Array[String]) {

println("Hello, world")
}

}

Using a text editor, save that source code in a file named Hello.scala. After saving it,
run this scalac command at your command line prompt to compile it:

$ scalac Hello.scala

scalac is just like javac, and that command creates two new files:

• Hello$.class
• Hello.class

These are the same types of “.class” bytecode files you create with javac, and they’re
ready to work with the JVM.

Now you can run the Hello application with the scala command:

$ scala Hello

4.1 Discussion

Here’s the original source code again:

19

20 CHAPTER 4. HELLO, WORLD

object Hello {
def main(args: Array[String]) {

println("Hello, world")
}

}

Here’s a short description of that code:

• It defines a method named main inside a Scala object named Hello
• An object is similar to a class, but you specifically use it when you want a

singleton object

– If you’re coming to Scala from Java, this means that main is just like a
static method (I write more on this later)

• main takes an input parameter named args that is a string array
• Array is a class that wraps the Java array primitive

That Scala code is pretty much the same as this Java code:

public class Hello {
public static void main(String[] args) {

System.out.println("Hello, world")
}

}

4.2 Going deeper: Scala creates .class files

As I mentioned, when you run the scalac command it creates .class JVM bytecode
files. You can see this for yourself. As an example, run this javap command on the
Hello.class file:

$ javap Hello.class
Compiled from "Hello.scala"
public final class Hello {

public static void main(java.lang.String[]);
}

4.2. GOING DEEPER: SCALA CREATES .CLASS FILES 21

As that output shows, the javap command reads that .class file just as if it was created
from Java source code. Scala code runs on the JVM and can use existing Java libraries,
and both are terrific benefits for Scala programmers.

4.2.1 Peaking behind the curtain

To be more precise, what happens is that Scala source code is initially compiled to Java
source code, and then that source code is turned into bytecode that works with the
JVM. I explain some details of this process in the Scala Cookbook1.

If you’re interested inmore details on this process right now, see the “Using scalac print
options” section of my How to disassemble and decompile Scala code2 tutorial.

1http://kbhr.co/hs-cook
2http://kbhr.co/hs-scalac

http://kbhr.co/hs-cook
http://kbhr.co/hs-scalac
http://kbhr.co/hs-cook
http://kbhr.co/hs-scalac

22 CHAPTER 4. HELLO, WORLD

5
Hello, World (Version 2)

While that first “Hello, World” example works just fine, Scala provides a way to write
applications more conveniently. Rather than including a main method, your object
can just extend the App trait, like this:

object Hello2 extends App {
println("Hello, world")

}

If you save that code toHello.scala, compile it with scalac and run it with scala, you’ll
see the same result as the previous lesson.

What happens here is that the App trait has its own main method, so you don’t need to
write one. I’ll show later on how you can access command-line arguments with this
approach, but the short story is that it’s easy: they’re made available to you in a string
array named args.

A Scala trait is similar to an abstract class in Java. More accurately, it’s a
combination of an abstract class and an interface — more on this later!

5.1 Extra credit

If you want to see how command-line arguments work when your object extends the
App trait, save this source code in a file named HelloYou.scala:

object HelloYou extends App {
if (args.size == 0)

println("Hello, you")
else

println("Hello, " + args(0))
}

23

24 CHAPTER 5. HELLO, WORLD (VERSION 2)

Then compile it with scalac:

scalac HelloYou.scala

Then run it with and without command-line arguments. Here’s an example:

$ scala HelloYou
Hello, you

$ scala HelloYou Al
Hello, Al

This shows:

• When you extend the App trait, command-line arguments are automatically
made available to you in a variable named args.

• You determine the number of elements in args with args.size (or
args.length, if you prefer).

• args is an Array, and you access Array elements as args(0), args(1), etc. Be-
cause args is an object, you access the array elements with parentheses (not []
or any other special syntax).

6
The Scala REPL

The Scala REPL (“Read-Evaluate-Print-Loop”) is a command-line interpreter that you
use as a playground area to test your Scala code. To start a REPL session just type scala
at your operating system command line, and you’ll see something like this:

$ scala
Welcome to Scala 2.12.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_131).
Type in expressions for evaluation. Or try :help.

scala> _

Because the REPL is a command-line interpreter, it just sits there waiting for you to
type something. Once you’re in the REPL, you can type Scala expressions to see how
they work:

scala> val x = 1
x: Int = 1

scala> val y = x + 1
y: Int = 2

As those examples show, just type your expressions inside the REPL, and it shows the
result of each expression on the line following the prompt.

6.1 Variables are created as needed

If you don’t assign the result of your expression to a variable, the REPL automatically
creates variables that start with the name res. The first variable is res0, the second one
is res1, etc.:

scala> 2 + 2
res0: Int = 4

25

26 CHAPTER 6. THE SCALA REPL

scala> 3 / 3
res1: Int = 1

These are actual variable names that are dynamically created, and you can use them in
your expressions:

scala> val z = res0 + res1
z: Int = 5

You’re going to use the REPL a lot in this book, so go ahead and start experimenting
with it. Here are a few expressions you can try to see how it all works:

val name = "John Doe"
"hello".head
"hello".tail
"hello, world".take(5)
println("hi")
1 + 2 * 3
(1 + 2) * 3
if (2 > 1) println("greater") else println("lesser")

While I prefer to use the REPL, there are a couple of other, similar tools you can use:

• The Scala IDE for Eclipse has aWorksheet plugin that lets you do the same things
inside your IDE

• IntelliJ IDEA also has a Worksheet
• scalafiddle.io1 lets you do a similar thing in a web browser (just remember to

press “Run”)

1https://scalafiddle.io/

https://scalafiddle.io/
https://scalafiddle.io/

6.2. MORE INFORMATION 27

6.2 More information

For more information on the Scala REPL, see these links:

• The REPL overview on scala-lang.org2

• My Getting started with the Scala REPL tutorial3

2https://docs.scala-lang.org/overviews/repl/overview.html
3http://kbhr.co/hs-repl

https://docs.scala-lang.org/overviews/repl/overview.html
http://kbhr.co/hs-repl
https://docs.scala-lang.org/overviews/repl/overview.html
http://kbhr.co/hs-repl

28 CHAPTER 6. THE SCALA REPL

7
Two Types of Variables

In Java you declare new variables like this:

String s = "hello";
int i = 42;
Person p = new Person("Joel Fleischman");

Each variable declaration is preceded by its type.

By contrast, Scala has only two types of variables:

• val creates an immutable variable (like final in Java)

• var creates a mutable variable

This is what variable declaration looks like in Scala:

val s = "hello" // immutable
var i = 42 // mutable

Here are some more examples:

val p = new Person("Joel Fleischman")
val nums = List(1, 2, 3)

Those examples show that the Scala compiler is usually smart enough to infer the vari-
able’s data type from the code on the right side of the = sign. This is considered an
implicit form. You can also explicitly declare the variable type if you prefer:

val s: String = "hello"
var i: Int = 42

In most cases the compiler doesn’t need to see those explicit types, but you can add
them if you think it makes your code easier to read. I usually use the explicit form

29

30 CHAPTER 7. TWO TYPES OF VARIABLES

when the type isn’t obvious.

As a practical matter I generally do this when working with complex code,
and when using methods in third-party libraries, especially when I don’t
use the library often or if their method names don’t make the type clear.
(I show examples of this later in the book.)

7.1 The difference between val and var

The difference between val and var is that val makes a variable immutable — like
final in Java — and varmakes a variablemutable. Because val fields can’t vary, some
people refer to them as values rather than variables.

The REPL shows what happens when you try to reassign a val field:

scala> val a = 'a'
a: Char = a

scala> a = 'b'
<console>:12: error: reassignment to val

a = 'b'
^

That fails with a “reassignment to val” error, as expected. Conversely, you can reassign
a var:

scala> var a = 'a'
a: Char = a

scala> a = 'b'
a: Char = b

In Scala the general rule is that you should always use a val field unless there’s a good
reason not to. This simple rule (a) makes your code more like algebra and (b) helps get
you started down the path to functional programming, where all fields are immutable.

7.2. “HELLO, WORLD” WITH A VAL FIELD 31

7.2 “Hello, world” with a val field

Here’s what a “Hello, world” app looks like with a val field:

object Hello3 extends App {
val hello = "Hello, world"
println(hello)

}

As before:

• Save that code in a file named Hello3.scala
• Compile it with scalac Hello3.scala
• Run it with scala Hello3

7.3 A note about val fields in the REPL

The REPL isn’t 100% the same as working with source code in an IDE, so there are a
few things you can do in the REPL that you can’t do when working on real-world code
in a project. One example of this is that you can reassign a val field in the REPL, like
this:

scala> val age = 18
age: Int = 18

scala> val age = 19
age: Int = 19

I thought I’d mention that because I didn’t want you to see it one day and think, “Hey,
Al said val fields couldn’t be reassigned.” They can be reassigned like that, but only in
the REPL.

32 CHAPTER 7. TWO TYPES OF VARIABLES

8
The Type is Optional

As I showed in the previous lesson, when you create a new variable in Scala you can
explicitly declare its type, like this:

val count: Int = 1
val name: String = "Alvin"

But …

8.1 The explicit form feels verbose

In most cases your code is easier to read when you leave the type off, so the implicit
form is preferred. For instance, in this example it’s obvious that the data type is Person,
so there’s no need to declare the type on the left side of the expression:

val p = new Person("Candy")

Indeed, when you put the type next to the variable name, the code feels unnecessarily
verbose:

val p: Person = new Person("Leo")

When creating new variables I rarely use that style.

8.2 Use the explicit form when you need to be clear

One place where you’ll want to show the data type is when you want to be clear about
what you’re creating. That is, if you don’t explicitly declare the data type, the compiler
may make a wrong assumption about what you want to create. Some examples of this
are when you want to create numbers with specific data types. I show this in the next
lesson.

33

34 CHAPTER 8. THE TYPE IS OPTIONAL

9
A Few Built-In Types

Scala comes with the standard numeric data types you’d expect. In Scala all of these
data types are full-blown objects (not primitive data types).

These examples show how to declare variables of the basic numeric types:

val b: Byte = 1
val x: Int = 1
val l: Long = 1
val s: Short = 1
val d: Double = 2.0
val f: Float = 3.0

In the first four examples, if you don’t explicitly specify a type, the number 1will default
to an Int, so if you want one of the other data types — Byte, Long, or Short — you
need to explicitly declare those types, as shown. Numbers with a decimal (like 2.0) will
default to a Double, so if you want a Float you need to declare a Float, as shown in
the last example.

Because Int and Double are the default numeric types, you typically create them with-
out explicitly declaring the data type:

val i = 123 // defaults to Int
val x = 1.0 // defaults to Double

The REPL confirms this:

scala> val i = 123
i: Int = 123

scala> val x = 1.0
x: Double = 1.0

35

36 CHAPTER 9. A FEW BUILT-IN TYPES

All of those data types have the same data ranges1 as their Java equivalents.

9.1 BigInt and BigDecimal

For large numbers Scala also includes the types BigInt and BigDecimal:

var b = BigInt(1234567890)
var b = BigDecimal(123456.789)

Here’s a link for more information about BigInt and BigDecimal2.

9.2 String and Char

Scala also has String and Char data types, which I always declare with the implicit
form:

val name = "Bill"
val c = 'a'

1http://kbhr.co/hs-data-ranges
2http://kbhr.co/hs-bigint

http://kbhr.co/hs-data-ranges
http://kbhr.co/hs-bigint
http://kbhr.co/hs-data-ranges
http://kbhr.co/hs-bigint

10
Two Notes About Strings

Scala strings have a lot of nice features, but I want to take a moment to highlight two
features that I’ll use in the rest of this book. The first feature is that Scala has a nice,
Ruby-like way to merge multiple strings. Given these three variables:

val firstName = "John"
val mi = 'C'
val lastName = "Doe"

you can append them together like this, if you want to:

val name = firstName + " " + mi + " " + lastName

However, Scala provides this more convenient form:

val name = s"$firstName $mi $lastName"

This creates a very readable way to print multiple strings:

val name = println(s"Name: $firstName $mi $lastName")

As shown, all you have to do to use this approach is to precede the string with the letter
s, and then put a $ symbol before your variable names inside the string. This feature is
known as string interpolation.

You can also precede strings with the letter f, which lets you use printf
style formatting inside strings. See my Scala string interpolation tutorial1
for more information.

1http://kbhr.co/hs-string-interp

37

http://kbhr.co/hs-string-interp
http://kbhr.co/hs-string-interp

38 CHAPTER 10. TWO NOTES ABOUT STRINGS

10.1 Multiline strings

A second great feature of Scala strings is that you can create multiline strings by includ-
ing the string inside three parentheses:

val speech = """Four score and
seven years ago
our fathers ..."""

That’s very helpful for when you need to work with multiline strings. One drawback
of this basic approach is that lines after the first line are indented, as you can see in the
REPL:

scala> val speech = """Four score and
| seven years ago
| our fathers ..."""

speech: String =
Four score and

seven years ago
our fathers ...

A simple way to fix this problem is to put a | symbol in front of all lines after the first
line, and call the stripMargin method after the string:

val speech = """Four score and
|seven years ago
|our fathers ...""".stripMargin

The REPL shows that when you do this, all of the lines are left-justified:

scala> val speech = """Four score and
| |seven years ago
| |our fathers ...""".stripMargin

speech: String =
Four score and
seven years ago
our fathers ...

Because this is generally what you want, this is a common way to create multiline
strings.

10.1. MULTILINE STRINGS 39

There are many more cool things you can do with strings. See my collection of over
100 Scala string examples2 for more details and examples.

2http://kbhr.co/hs-strings

http://kbhr.co/hs-strings
http://kbhr.co/hs-strings
http://kbhr.co/hs-strings

40 CHAPTER 10. TWO NOTES ABOUT STRINGS

11
Command-Line I/O

To get ready to show for loops, if expressions, and other Scala constructs, let’s take a
look at how to handle command-line input and output with Scala.

11.1 Writing output

As I’ve already shown, you write output to standard out (STDOUT) using println:

println("Hello, world")

That function adds a newline character after your string, so if you don’t want that, just
use print instead:

print("Hello without newline")

When needed, you can also write output to standard error (STDERR) like this:

System.err.println("yikes, an error happened")

Because println is so commonly used, there’s no need to import it. The
same is true of other commonly-used types like String, Int, Float, etc.

11.2 Reading input

There are several ways to read command-line input, but the easiest way is to use the
readLine method in the scala.io.StdIn package.

To demonstrate how readLine works, let’s create a little example. Put this source code
in a file named HelloInteractive.scala:

41

42 CHAPTER 11. COMMAND-LINE I/O

import scala.io.StdIn.readLine

object HelloInteractive extends App {

print("Enter your first name: ")
val firstName = readLine()

print("Enter your last name: ")
val lastName = readLine()

println(s"Your name is $firstName $lastName")

}

Then compile it with scalac:

$ scalac HelloInteractive.scala

Then run it with scala:

$ scala HelloInteractive

When you run the program and enter your first and last names at the prompts, the
interaction looks like this:

$ scala HelloInteractive
Enter your first name: Alvin
Enter your last name: Alexander
Your name is Alvin Alexander

11.2.1 A note about imports

As you saw in this application, you bring classes and methods into scope in Scala just
like you do with Java and other languages, with import statements:

import scala.io.StdIn.readLine

That import statement brings the readLine method into the current scope so you can
use it in the application.

12
Control Structures

Scala has the basic control structures you’d expect to find in a programming language,
including:

• if/then/else
• for loops
• try/catch/finally

It also has a few advanced constructs, including:

• match expressions
• for expressions

I’ll demonstrate all of those in the following lessons.

43

44 CHAPTER 12. CONTROL STRUCTURES

13
The if/then/else Construct

A basic Scala if statement looks like this:

if (a == b) doSomething()

You can also write that statement like this:

if (a == b) {
doSomething()

}

The if/else construct looks like this:

if (a == b) {
doSomething()

} else {
doSomethingElse()

}

The complete Scala if/else-if/else expression looks like this:

if (test1) {
doX()

} else if (test2) {
doY()

} else {
doZ()

}

13.1 if expressions always return a result

A great thing about the Scala if construct is that it always returns a result. You can
ignore the result as I did in the previous examples, but a more common approach —

45

46 CHAPTER 13. THE IF/THEN/ELSE CONSTRUCT

especially in functional programming — is to assign the result to a variable:

val minValue = if (a < b) a else b

This is cool because it means that Scala doesn’t require a special “ternary” operator.

13.2 Aside: Expression-oriented programming

As a brief note about programming in general, when every expression youwrite returns
a value, that style is referred to as expression-oriented programming, or EOP. This is an
example of an expression:

val minValue = if (a < b) a else b

Conversely, lines of code that don’t return values are called statements, and statements
are used for their side-effects. For example, these lines of code don’t return values, so
they’re used for their side effects:

if (a == b) doSomething()
println("Hello")

The first example runs the doSomething method as a side effect when a is equal to
b. The second example is used for the side effect of writing a string to STDOUT. As
you learn more about Scala you’ll find yourself writing more expressions and fewer
statements.

14
for and while Loops

In its most simple use, a Scala for-loop can be used to iterate over the elements in a
collection. For example, given a sequence of integers in a Vector:

val nums = Vector(1,2,3)

you can loop over them and print out their values like this:

for (n <- nums) println(n)

This is what that code looks like in the REPL:

scala> val nums = Vector(1,2,3)
nums: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)

scala> for (n <- nums) println(n)
1
2
3

That example stores a sequence of integers in a Vector, resulting in the data
type Vector[Int]. Similarly, here’s a List of strings, which has the data type
List[String]:

val people = List(
"Bill",
"Candy",
"Karen",
"Leo",
"Regina"

)

47

48 CHAPTER 14. FOR AND WHILE LOOPS

You print its values using a for loop just like the previous example:

for (p <- people) println(p)

Vector and List are two types of sequential collections classes. In Scala
these classes are generally preferred over Array. (More on this later.)

14.1 The foreach method

For the purpose of iterating over a collection of elements and printing its contents
you can also use the foreach method that’s available to Scala collections classes. For
example, this is how you use foreach to print the previous list of strings:

people.foreach(println)

These days I generally use for loops, but foreach is also available on data types like
Vector, List, Array, ArrayBuffer, Map, Set, and more.

14.2 Using for and foreach with Maps

You can also use for and foreach when working with a Scala Map (which is similar to
a Java HashMap). For example, given this Map of movie names and ratings:

val ratings = Map(
"Lady in the Water" -> 3.0,
"Snakes on a Plane" -> 4.0,
"You, Me and Dupree" -> 3.5

)

You can print the names and ratings using for like this:

for ((name,rating) <- ratings) println(s"Movie: $name, Rating: $rating")

Here’s what that looks like in the REPL:

scala> for ((name,rating) <- ratings) println(s"Movie: $name, Rating: $rating")
Movie: Lady in the Water, Rating: 3.0
Movie: Snakes on a Plane, Rating: 4.0

14.3. WHILE AND DO/WHILE 49

Movie: You, Me and Dupree, Rating: 3.5

In this example, name corresponds to each key in the map, and rating is the name for
each value in the map.

You can also print the ratings with foreach like this:

ratings.foreach {
case(movie, rating) => println(s"key: $movie, value: $rating")

}

When I first started working with Scala I used foreach quite a bit, but after learning
about functional programming I rarely use foreach, mainly because it’s only used for
side effects. Therefore, I won’t discuss the case syntax used in this example. However,
I will discuss match expressions and case statements later in this book.

14.3 while and do/while

Scala also has while and do/while loops, which are also used for side effects. Here’s the
while loop:

var i = 0
while (i < 3) {

println(i)
i += 1

}

This is the do/while loop syntax:

var i = 0
do {

println(i)
i += 1

} while (i < 3)

As shown, you use += to increment an Int variable. Similarly, you use -= to decrement
one.

50 CHAPTER 14. FOR AND WHILE LOOPS

15
for Expressions

If you recall what I wrote about Expression-Oriented Programming (EOP) and the
difference between expressions and statements, you’ll notice that in the previous lesson
I used the for keyword and foreach method as tools for side effects: I used them to
print the values in collections to STDOUT using println. Java has similar tools, and
that’s how I used them for many years without ever giving much thought to how they
could be improved.

After I started working with Scala I learned that in functional programming languages
you can use powerful for-expressions (also known as for-comprehensions) in addition
to for-loops. In Scala, a for-expression is a different use of the for construct. While
a for-loop is used for side effects (such as printing output), a for-expression is used to
create a new collection from an existing collection. (In advanced Scala code it has even
more uses.)

For example, given this list of integers:

val nums = Seq(1,2,3)

You can create a new list of integers where all of the values are doubled, like this:

val doubledNums = for (n <- nums) yield n * 2

That expression can be read as, “For every number n in the list of numbers nums, double
each value, and then assign all of the new values to the variable doubledNums.” This is
what it looks like in the Scala REPL:

scala> val doubledNums = for (n <- nums) yield n * 2
doubledNums: Seq[Int] = List(2, 4, 6)

As the REPL output shows, the new list doubledNums contains these values:

List(2,4,6)

51

52 CHAPTER 15. FOR EXPRESSIONS

The result of the for-expression is that it creates a new variable named doubledNums
whose values were created by doubling each value in the original list, nums.

15.1 Capitalizing a list of strings

You can use the same approach with a list of strings. For example, given this list of
lowercase strings:

val names = List("adam", "david", "frank")

You can create a list of capitalized strings with this for-expression:

val capNames = for (name <- names) yield name.capitalize

The REPL shows how this works:

scala> val capNames = for (name <- names) yield name.capitalize
capNames: List[String] = List(Adam, David, Frank)

Success! Each name in the new variable capNames is capitalized.

15.2 The yield keyword

Notice that both of those for-expressions use the yield keyword:

val doubledNums = for (n <- nums) yield n * 2

val capNames = for (name <- names) yield name.capitalize

Using yield after for is the “secret sauce” that says, “I want to yield a new collection
from the existing collection that I’m iterating over in the for-expression, using the al-
gorithm shown.”

It’s important to note that the original collections nums and names have not been
changed. The for-expressions shown create the new collections doubledNums and
capNames from those original collections without modifying them.

15.3. USING A BLOCK OF CODE AFTER YIELD 53

15.3 Using a block of code after yield

The code after the yield expression can be as long as necessary to solve the current
problem. For example, given a list of strings like this:

val names = List("_adam", "_david", "_frank")

Imagine that youwant to create a new list that has the capitalized names of each person.
To do that, you first need to remove the underscore character at the beginning of each
name, and then capitalize each name. To remove the underscore from each name,
you call the tail method on each String, which returns every character after the first
character. After you do that, you call the capitalize method on each string. Here’s a
for-expression that implements this algorithm:

val capNames = for (name <- names) yield {
val nameWithoutUnderscore = name.tail
val capName = nameWithoutUnderscore.capitalize
capName

}

If you put that code in the REPL, you’ll see this result:

capNames: List[String] = List(Adam, David, Frank)

15.3.1 How tail works

The tail method works on sequential collections, and returns every element in the
collection after the first element (which is known as the head element). Because a
String is a sequence of characters (Seq[Char]), the head and tail methods work on
strings like this:

scala> val result = "fred".head
result: Char = f

scala> val result = "fred".tail
result: String = red

54 CHAPTER 15. FOR EXPRESSIONS

15.3.2 A shorter version of the solution

I show the verbose form of the solution in that example so you can see how to use
multiple lines of code after yield. However, for this particular example you can also
write the code like this, which is more of the Scala style:

val capNames = for (name <- names) yield name.tail.capitalize

You can also put curly braces around the algorithm, if you prefer:

val capNames = for (name <- names) yield { name.tail.capitalize }

Lastly, you can also explicitly show the variable type, if you prefer:

val capNames: List[String] = for (name <- names) yield name.tail.capitalize

15.4 See also

• My Scala for-loop examples and syntax1

• My How to create Scala for-expressions2

• List Comprehensions on Wikipedia3

1http://kbhr.co/hs-for-loop
2http://kbhr.co/hs-for-expr
3https://en.wikipedia.org/wiki/List_comprehension

http://kbhr.co/hs-for-loop
http://kbhr.co/hs-for-expr
https://en.wikipedia.org/wiki/List_comprehension
http://kbhr.co/hs-for-loop
http://kbhr.co/hs-for-expr
https://en.wikipedia.org/wiki/List_comprehension

16
match Expressions

Scala has a concept of a match expression. In the most simple case you can use a match
expression like a Java switch statement:

// i is an integer
i match {

case 1 => println("January")
case 2 => println("February")
case 3 => println("March")
case 4 => println("April")
case 5 => println("May")
case 6 => println("June")
case 7 => println("July")
case 8 => println("August")
case 9 => println("September")
case 10 => println("October")
case 11 => println("November")
case 12 => println("December")
// catch-all case for any other number
case _ => println("Invalid month")

}

As shown, with a match expression you write a number of case statements that you
use to match possible values. In this example I match the integer values 1 through 12.
Any other value falls down to the _ case, which is the catch-all, default case.

match expressions are nice because they also return values, so rather than directly print-
ing a string as in that example, you can assign the string result to a new value:

val monthName = i match {
case 1 => "January"
case 2 => "February"
case 3 => "March"

55

56 CHAPTER 16. MATCH EXPRESSIONS

case 4 => "April"
case 5 => "May"
case 6 => "June"
case 7 => "July"
case 8 => "August"
case 9 => "September"
case 10 => "October"
case 11 => "November"
case 12 => "December"
case _ => "Invalid month"

}

Using a match expression to yield a result like this is a common use.

16.1 Aside: A quick look at Scala methods

Scala also makes it easy to use a match expression as the body of a method. I haven’t
shownhow towrite Scalamethods yet, so as a brief introduction, letme share amethod
named convertBooleanToString that takes a Boolean value named bool and returns
a String:

def convertBooleanToString(bool: Boolean): String = {
if (bool) "true" else "false"

}

Even though I haven’t introduced the method syntax yet, I hope you can see how that
code works. These REPL examples demonstrate it with true and false values:

scala> val answer = convertBooleanToString(true)
answer: String = true

scala> val answer = convertBooleanToString(false)
answer: String = false

16.2 Using a match expression as the body of a method

Now that you’ve seen an example of a Scalamethod, here’s a second example that works
just like the previous one, taking a Boolean value named bool as an input parameter

16.3. HANDLING ALTERNATE CASES 57

and returning a String message. The big difference is that this method uses a match
expression for the body of the method:

def convertBooleanToString(bool: Boolean): String = bool match {
case true => "true"
case false => "false"

}

The body of that method is a match expression with two case statements, one that
matches true and another that matches false. Because those are the only possible
Boolean values, there’s no need for a default case statement.

The REPL shows how you call that method and then print its result:

scala> val result = convertBooleanToString(true)
result: String = true

scala> println(result)
true

Using a match expression as the body of a method is a common technique.

16.3 Handling alternate cases

Scala match expressions are extremely powerful, so I’ll demonstrate a few other things
you can do with them.

match expressions let you handle multiple cases in a single case statement. To demon-
strate this, imagine that you want to evaluate “boolean equality” like the Perl program-
ming language handles it: a 0 or a blank string evaluates to false, and anything else
evaluates to true. This is how you write a method using a match expression that evalu-
ates to true and false in the manner described:

def isTrue(a: Any) = a match {
case 0 | "" => false
case _ => true

}

58 CHAPTER 16. MATCH EXPRESSIONS

Because the input parameter a is defined to be the Any type — which is the root of all
Scala classes, like Object in Java — this method works with any data type that’s passed
in:

scala> isTrue(0)
res0: Boolean = false

scala> isTrue("")
res1: Boolean = false

scala> isTrue(1.1F)
res2: Boolean = true

scala> isTrue(new java.io.File("/etc/passwd"))
res3: Boolean = true

The key part of this solution is that this single case statement lets both 0 and the empty
string evaluate to false:

case 0 | "" => false

Before I move on, here’s another example that shows many matches in each case state-
ment:

val evenOrOdd = i match {
case 1 | 3 | 5 | 7 | 9 => println("odd")
case 2 | 4 | 6 | 8 | 10 => println("even")
case _ => println("some other number")

}

Here’s another example that shows how to handle multiple strings in multiple case
statements:

cmd match {
case "start" | "go" => println("starting")
case "stop" | "quit" | "exit" => println("stopping")
case _ => println("doing nothing")

}

16.4. USING IF EXPRESSIONS IN CASE STATEMENTS 59

16.4 Using if expressions in case statements

Another great thing about match expressions is that you can use if expressions in case
statements for powerful pattern matching. In this example the second and third case
statements both use if expressions to match ranges of numbers:

count match {
case 1 => println("one, a lonely number")
case x if x == 2 || x == 3 => println("two's company, three's a crowd")
case x if x > 3 => println("4+, that's a party")
case _ => println("i'm guessing your number is zero or less")

}

Scala doesn’t require you to use parentheses in the if expressions, but you can use them
if you think that makes them more readable:

count match {
case 1 => println("one, a lonely number")
case x if (x == 2 || x == 3) => println("two's company, three's a crowd")
case x if (x > 3) => println("4+, that's a party")
case _ => println("i'm guessing your number is zero or less")

}

You can also write the code on the right side of the => on multiple lines if you think
that’s easier to read. Here’s one example:

count match {
case 1 =>

println("one, a lonely number")
case x if x == 2 || x == 3 =>

println("two's company, three's a crowd")
case x if x > 3 =>

println("4+, that's a party")
case _ =>

println("i'm guessing your number is zero or less")
}

Here’s a variation of that example that uses parentheses around the body of each case:

60 CHAPTER 16. MATCH EXPRESSIONS

count match {
case 1 => {

println("one, a lonely number")
}
case x if x == 2 || x == 3 => {

println("two's company, three's a crowd")
}
case x if x > 3 => {

println("4+, that's a party")
}
case _ => {

println("i'm guessing your number is zero or less")
}

}

Here are a few other examples of how you can use if expressions in case statements.
First, another example of how to match ranges of numbers:

i match {
case a if 0 to 9 contains a => println("0-9 range: " + a)
case b if 10 to 19 contains b => println("10-19 range: " + a)
case c if 20 to 29 contains c => println("20-29 range: " + a)
case _ => println("Hmmm...")

}

Lastly, this example shows how to reference class fields in if expressions:

stock match {
case x if (x.symbol == "XYZ" && x.price < 20) => buy(x)
case x if (x.symbol == "XYZ" && x.price > 50) => sell(x)
case x => doNothing(x)

}

16.5. EVEN MORE … 61

16.5 Even more …

match expressions are very powerful, and there are even more things you can do with
them. Please see the match expressions on this page1 or the Scala Cookbook2 for more
examples.

1http://kbhr.co/hs-match
2http://kbhr.co/hs-cook

http://kbhr.co/hs-match
http://kbhr.co/hs-cook
http://kbhr.co/hs-match
http://kbhr.co/hs-cook

62 CHAPTER 16. MATCH EXPRESSIONS

17
try/catch/finally Expressions

Like Java, Scala has a try/catch/finally construct to let you catch and manage excep-
tions. Themain difference is that for consistency, Scala uses the same syntax that match
expressions use: case statements to match the different possible exceptions that can
occur.

17.1 A try/catch example

Here’s an example of Scala’s try/catch syntax. In this example, openAndReadAFile is a
method that does what its name implies: it opens a file and reads the text in it, assigning
the result to the variable named text:

var text = ""
try {

text = openAndReadAFile(filename)
} catch {

case e: FileNotFoundException => println("Couldn't find that file.")
case e: IOException => println("D'oh, an IOException!")

}

Scala uses the java.io.* classes to work with files, so attempting to open and read a file
can result in both a FileNotFoundException and an IOException. Those two excep-
tions are caught in the catch block of this example.

17.2 try, catch, and finally

The Scala try/catch syntax also lets you use a finally clause, which is typically used
when you need to close a resource. Here’s an example of what that looks like:

63

64 CHAPTER 17. TRY/CATCH/FINALLY EXPRESSIONS

try {
// your scala code here

}
catch {

case foo: FooException => handleFooException(foo)
case bar: BarException => handleBarException(bar)
case _: Throwable => println("Got some other kind of Throwable")

} finally {
// your scala code here, such as closing a database connection
// or file handle

}

17.3 More later

I’ll cover more details about Scala’s try/catch/finally syntax in later lessons, such as in
the “Error Handling” lessons, but these examples demonstrate the syntax. It’s great
that it’s consistent with the match expression syntax because it’s easier to remember,
and therefore less of a burden on my brain.

18
Classes

In support of object-oriented programming (OOP), Scala provides a class construct.
The syntax is more concise than languages like Java and C#, but it’s also still easy to use
and read.

18.1 Basic class constructor

Here’s a Scala class whose constructor defines two parameters, firstName and
lastName:

class Person(var firstName: String, var lastName: String)

With that definition you can create new Person instances like this:

val p = new Person("Bill", "Panner")

Defining parameters in a class constructor automatically creates fields in the class, and
in this example you can access the firstName and lastName fields like this:

scala> println(p.firstName + " " + p.lastName)
Bill Panner

In this example, because both fields are defined as var fields, they’re also mutable,
meaning they can be changed. This is how you change them:

scala> p.firstName = "Forest"
p.firstName: String = Forest

scala> p.lastName = "Bernheim"
p.lastName: String = Bernheim

65

66 CHAPTER 18. CLASSES

If you’re coming to Scala from Java, this Scala code:

class Person(var firstName: String, var lastName: String)

is pretty much the equivalent of this Java code:

public class Person {

private String firstName;
private String lastName;

public Person(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

public String getFirstName() {
return this.firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getLastName() {
return this.lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}

}

18.2 val makes fields read-only

In that first example I defined both fields as var fields:

18.3. CLASS CONSTRUCTORS 67

class Person(var firstName: String, var lastName: String)
--- ---

That makes those fields mutable. You can also define them as val fields, which makes
them immutable:

class Person(val firstName: String, val lastName: String)
--- ---

If you now try to change the first or last name of a Person instance, you’ll see an error:

scala> p.firstName = "Fred"
<console>:12: error: reassignment to val

p.firstName = "Fred"
^

scala> p.lastName = "Jones"
<console>:12: error: reassignment to val

p.lastName = "Jones"
^

Pro tip: If you use Scala to write OOP code, create your fields as var fields
so you can easily mutate them. When you write FP code with Scala, you’ll
generally use case classes instead of classes like this. (More on this later.)

18.3 Class constructors

In Scala, the primary constructor of a class is a combination of:

• The constructor parameters
• Methods that are called in the body of the class
• Statements and expressions that are executed in the body of the class

Fields declared in the body of a Scala class are handled in a manner similar to Java;
they’re assigned when the class is first instantiated.

This Person class demonstrates several of the things you can do inside the body of a
class.

68 CHAPTER 18. CLASSES

class Person(var firstName: String, var lastName: String) {

println("the constructor begins")

// fields have 'public' access by default
var age = 0

// a private class field
private val HOME = System.getProperty("user.home")

// some methods
override def toString(): String =

s"$firstName $lastName is $age years old"

def printHome(): Unit = println(s"HOME = $HOME")

def printFullName(): Unit = println(this)

printHome()
printFullName()
println("you've reached the end of the constructor")

}

Putting this code in the REPL demonstrates how it works:

scala> val p = new Person("Kim", "Carnes")
the constructor begins
HOME = /Users/al
Kim Carnes is 0 years old
you've reached the end of the constructor
p: Person = Kim Carnes is 0 years old
// that last line is output by the REPL, not my code

scala> p.age
res0: Int = 0

scala> p.age = 36
p.age: Int = 36

18.4. A NOTE ABOUT THE SPECIAL PROCEDURE SYNTAX 69

scala> p
res1: Person = Kim Carnes is 36 years old

scala> p.printHome
HOME = /Users/al

scala> p.printFullName
Kim Carnes is 36 years old

Speaking from my own experience, this constructor approach felt a little unusual at
first, but once I understood how it works I found it to be logical and convenient.

18.4 A note about the special procedure syntax

In that example I declared these two methods to return the Unit type:

def printHome(): Unit = println(s"HOME = $HOME")

def printFullName(): Unit = println(this)

The Unit return type means that these methods don’t return anything; in this case they
just print some output. Methods that don’t return anything are known as procedures.
Up through at least Scala 2.12 you can also use this special procedure syntax to declare
procedures:

def printHome { println(s"HOME = $HOME") }

def printFullName { println(this) }

Because these methods don’t have any input parameters and also have no return type,
that’s a perfectly legal way to define these methods.

However, be aware that this syntax may go away in future Scala releases.
(There’s a concern that this is a special syntax just to save a few characters
of typing.)

70 CHAPTER 18. CLASSES

18.5 Other Scala class examples

Before we move on, here are a few other examples of Scala classes:

class Pizza (
var crustSize: Int,
var crustType: String,
var toppings: Seq[Topping]

)

// a stock, like AAPL or GOOG
class StockPriceInstance(

var symbol: String,
var price: BigDecimal,
var datetime: Date

)

// a network socket
class Socket(val timeout: Int, val linger: Int) {

override def toString = s"timeout: $timeout, linger: $linger"
}

class Address (
var street1: String,
var street2: String,
var city: String,
var state: String

)

19
Auxiliary Class Constructors

Auxiliary class constructors are defined by creatingmethods in the class that are named
this. There are only a few rules to know:

• Each auxiliary constructor must have a different signature (different parameter
lists)

• Each auxiliary constructor must call one of the previously defined constructors

Here’s an example of a Pizza class that defines multiple constructors:

val DEFAULT_CRUST_SIZE = 12
val DEFAULT_CRUST_TYPE = "THIN"

// the primary constructor
class Pizza (var crustSize: Int, var crustType: String) {

// one-arg auxiliary constructor
def this(crustSize: Int) {

this(crustSize, DEFAULT_CRUST_TYPE)
}

// one-arg auxiliary constructor
def this(crustType: String) {

this(DEFAULT_CRUST_SIZE, crustType)
}

// zero-arg auxiliary constructor
def this() {

this(DEFAULT_CRUST_SIZE, DEFAULT_CRUST_TYPE)
}

71

72 CHAPTER 19. AUXILIARY CLASS CONSTRUCTORS

override def toString = s"A $crustSize inch pizza with a $crustType crust"

}

With all of those constructors defined, you can create pizza instances in several differ-
ent ways:

val p1 = new Pizza(DEFAULT_CRUST_SIZE, DEFAULT_CRUST_TYPE)
val p2 = new Pizza(DEFAULT_CRUST_SIZE)
val p3 = new Pizza(DEFAULT_CRUST_TYPE)
val p4 = new Pizza

I encourage you to paste that class and those examples into the Scala REPL to see how
they work.

Note: The DEFAULT_CRUST_SIZE and DEFAULT_CRUST_TYPE variables
aren’t a great example of how to handle this situation, but because I
haven’t shown how to handle enumerations yet, I use this approach to
keep things simple.

20
Supplying Default Values for
Constructor Parameters

A convenient Scala feature is that you can supply default values for constructor param-
eters. In the previous lessons I showed that you can define a Socket class like this:

class Socket(var timeout: Int, var linger: Int) {
override def toString = s"timeout: $timeout, linger: $linger"

}

That’s nice, but you can make this class even better by supplying default values for the
timeout and linger parameters:

class Socket(var timeout: Int = 2000, var linger: Int = 3000) {
override def toString = s"timeout: $timeout, linger: $linger"

}

By supplying default values for the parameters, you can now create a new Socket in a
variety of different ways:

new Socket
new Socket()
new Socket(1000)
new Socket(4000, 6000)

This is what those examples look like in the REPL:

scala> new Socket
res0: Socket = timeout: 2000, linger: 3000

scala> new Socket()
res1: Socket = timeout: 2000, linger: 3000

73

74
CHAPTER 20. SUPPLYING DEFAULT VALUES FOR CONSTRUCTOR

PARAMETERS

scala> new Socket(1000)
res2: Socket = timeout: 1000, linger: 3000

scala> new Socket(4000, 6000)
res3: Socket = timeout: 4000, linger: 6000

20.1 Bonus: Named parameters

Another nice thing about Scala is that you can use a different feature called named
parameters when creating an instance of a class. For example, given this class:

class Socket(var timeout: Int, var linger: Int) {
override def toString = s"timeout: $timeout, linger: $linger"

}

you can create a new Socket using named parameters like this:

val s = new Socket(timeout=2000, linger=3000)

I personally don’t use this feature very often, but it comes in handy every once in a
while, especially when every class constructor parameters has the same type, such as
Int in this example. For instance, some people find that this code:

val s = new Socket(timeout=2000, linger=3000)

is more readable than this code:

val s = new Socket(2000, 3000)

You can also use named parameters when calling methods.

21
A First Look at Methods

In Scala,methods are defined inside classes (just like Java), but for testing purposes you
can also create them in the REPL. This lesson shows a few examples of methods so you
can see what the syntax looks like.

21.1 Defining a method that takes one input parameter

This is how you define a method named double that takes one integer input parameter
named a and returns the doubled value of that integer:

def double(a: Int) = a * 2

In that example themethod name and signature are shown on the left side of the = sign:

def double(a: Int) = a * 2

def is the keyword you use to define a method, the method name is double, and the
input parameter a has the type Int, which is Scala’s integer data type.

The body of the method is shown on the right side, and in this example it simply dou-
bles the value of the input parameter a:

def double(a: Int) = a * 2

After you paste that method into the REPL, you call it (invoke it) by giving it an Int
value:

scala> double(2)
res0: Int = 4

75

76 CHAPTER 21. A FIRST LOOK AT METHODS

scala> double(10)
res1: Int = 20

21.2 Showing the method’s return type

In the previous example I don’t show the method’s return type, but you can show it,
and indeed, I normally do:

def double(a: Int): Int = a * 2

Writing a method like this explicitly declares the method’s return type. When I first
started working with Scala I tended to leave the return type off of my method declara-
tions, but after a while I found that it was easier to maintain my code when I declared
the return type. That way I could just scan the function signature to easily see its input
and output types.

That being said, that’s just my personal preference; use whatever you like.

If you paste that method into the REPL, you’ll see that it works just like the previous
method.

21.3 Methods with multiple input parameters

To show something a little more complex, here’s a method that takes two input param-
eters:

def add(a: Int, b: Int) = a + b

Here’s the same method, with the method’s return type explicitly shown:

def add(a: Int, b: Int): Int = a + b

Here’s a method that takes three input parameters:

def add(a: Int, b: Int, c: Int): Int = a + b + c

21.4. MULTILINE METHODS 77

21.4 Multiline methods

When a method is only one line long I use the format I just showed, but when the
method body gets longer, you must put the lines inside curly braces:

def addThenDouble(a: Int, b: Int): Int = {
val sum = a + b
val doubled = sum * 2
doubled

}

If you paste that code into the REPL, you’ll see that it works just like the previous
examples:

scala> addThenDouble(1, 1)
res0: Int = 4

21.5 return is optional

You can use the return keyword to return a value from your method:

def addThenDouble(a: Int, b: Int): Int = {
val sum = a + b
val doubled = sum * 2
return doubled //<-- return this result

}

However, it isn’t required, and in fact, Scala programmers rarely ever use it:

def addThenDouble(a: Int, b: Int): Int = {
val sum = a + b
val doubled = sum * 2
doubled //<-- `return` isn't needed

}

In fact, that method can be reduced to this:

78 CHAPTER 21. A FIRST LOOK AT METHODS

def addThenDouble(a: Int, b: Int): Int = {
val sum = a + b
sum * 2

}

or this:

def addThenDouble(a: Int, b: Int): Int = {
(a + b) * 2

}

or this:

def addThenDouble(a: Int, b: Int): Int = (a + b) * 2

21.5.1 Why we don’t use return

We don’t use return for a couple of reasons. First, any code inside parentheses is really
just a block of code that evaluates to a result. When you think about your code this
way, you’re not really “returning” anything; the block of code just evaluates to a result.
For instance, if you paste this code into the REPL, you’ll begin to see that it doesn’t feel
right to “return” a value from a block of code:

val c = {
val a = 1
val b = 2
a + b

}

The second reason we don’t use return is that when you write pure functions, the gen-
eral feeling is that you’re writing algebraic equations. If you remember your algebra,
you know that you don’t use return with mathematical expressions:

x = a + b
y = x * 2

Similarly, as your code becomes more functional and you write it more like math ex-
pressions, you’ll find that you won’t use return any more.

21.6. SEE ALSO 79

21.6 See also

If you’re interested in pure functions and functional programming, I writemuchmore
about them in my book, Functional Programming, Simplified1.

1http://kbhr.co/hs-fps

http://kbhr.co/hs-fps
http://kbhr.co/hs-fps

80 CHAPTER 21. A FIRST LOOK AT METHODS

22
Enumerations (and a Complete Pizza

Class)

In this lesson I’ll demonstrate how to create enumerations in Scala. By doing this now,
I can show you what an example Pizza class looks like when written in an object-
oriented manner.

Enumerations are a useful tool for creating small groups of constants, things like the
days of the week, months in a year, suits in a deck of cards, etc., situations where you
have a group of related, constant values.

Because I’m jumping ahead a little bit here I’m not going to explain this syntax too
much, but this is how you create an enumeration for the days of a week:

sealed trait DayOfWeek
case object Sunday extends DayOfWeek
case object Monday extends DayOfWeek
case object Tuesday extends DayOfWeek
case object Wednesday extends DayOfWeek
case object Thursday extends DayOfWeek
case object Friday extends DayOfWeek
case object Saturday extends DayOfWeek

Similarly, this is how you create an enumeration for the suits in a deck of cards:

sealed trait Suit
case object Clubs extends Suit
case object Spades extends Suit
case object Diamonds extends Suit
case object Hearts extends Suit

I’ll discuss traits and case objects later in this book, but if you’ll trust me that this is
how you create enumerations, I can now create a little OOP version of a Pizza class.

81

82 CHAPTER 22. ENUMERATIONS (AND A COMPLETE PIZZA CLASS)

22.1 Pizza-related enumerations

Given that brief introduction to enumerations, here are some useful pizza-related enu-
merations:

sealed trait Topping
case object Cheese extends Topping
case object Pepperoni extends Topping
case object Sausage extends Topping
case object Mushrooms extends Topping
case object Onions extends Topping

sealed trait CrustSize
case object SmallCrustSize extends CrustSize
case object MediumCrustSize extends CrustSize
case object LargeCrustSize extends CrustSize

sealed trait CrustType
case object RegularCrustType extends CrustType
case object ThinCrustType extends CrustType
case object ThickCrustType extends CrustType

Those enumerations provide a nice way to work with pizza toppings, crust sizes, and
crust types.

22.2 A sample Pizza class

Now that I have those enumerations, I can define a Pizza class like this:

class Pizza (
var crustSize: CrustSize = MediumCrustSize,
var crustType: CrustType = RegularCrustType

) {

// ArrayBuffer is a mutable sequence (list)
val toppings = scala.collection.mutable.ArrayBuffer[Topping]()

def addTopping(t: Topping): Unit = { toppings += t }
def removeTopping(t: Topping): Unit = { toppings -= t }

22.3. A COMPLETE PIZZA CLASS WITH AMAIN METHOD 83

def removeAllToppings(): Unit = { toppings.clear() }

}

If you save all of that code— including the enumerations— in a file named Pizza.scala,
you can compile it with the usual command:

$ scalac Pizza.scala

That code will create a lot of individual files, so I recommend putting it in
a separate directory.

There’s nothing to run yet because this class doesn’t have a main method, but …

22.3 A complete Pizza class with a main method

If you’re ready to have some fun, replace all of the code in Pizza.scalawith the following
code, which includes a new toString method in the Pizza class and a new driver App
named PizzaTest:

import scala.collection.mutable.ArrayBuffer

sealed trait Topping
case object Cheese extends Topping
case object Pepperoni extends Topping
case object Sausage extends Topping
case object Mushrooms extends Topping
case object Onions extends Topping

sealed trait CrustSize
case object SmallCrustSize extends CrustSize
case object MediumCrustSize extends CrustSize
case object LargeCrustSize extends CrustSize

sealed trait CrustType
case object RegularCrustType extends CrustType
case object ThinCrustType extends CrustType
case object ThickCrustType extends CrustType

84 CHAPTER 22. ENUMERATIONS (AND A COMPLETE PIZZA CLASS)

class Pizza (
var crustSize: CrustSize = MediumCrustSize,
var crustType: CrustType = RegularCrustType

) {

// ArrayBuffer is a mutable sequence (list)
val toppings = ArrayBuffer[Topping]()

def addTopping(t: Topping): Unit = { toppings += t }
def removeTopping(t: Topping): Unit = { toppings -= t }
def removeAllToppings(): Unit = { toppings.clear() }

override def toString(): String = {
s"""
|Crust Size: $crustSize
|Crust Type: $crustType
|Toppings: $toppings
""".stripMargin

}
}

// a little "driver" app
object PizzaTest extends App {

val p = new Pizza
p.addTopping(Cheese)
p.addTopping(Pepperoni)
println(p)

}

Notice how you can put all of the enumerations, a Pizza class, and a PizzaTest object
in the same file. That’s a very convenient Scala feature.

Next, compile that code with the usual command:

$ scalac Pizza.scala

22.3. A COMPLETE PIZZA CLASS WITH AMAIN METHOD 85

Then run the PizzaTest object with this command:

$ scala PizzaTest

The output should look like this:

$ scala PizzaTest

Crust Size: MediumCrustSize
Crust Type: RegularCrustType
Toppings: ArrayBuffer(Cheese, Pepperoni)

I put several different concepts together to create that code — including two things I
haven’t discussed yet in the import statement and the ArrayBuffer — but if you have
experience with Java and other languages, I hope it’s not too much to throw at you at
one time.

At this point I encourage you to work with that code as desired. Make changes to
the code, and try using the removeTopping and removeAllToppingsmethods to make
sure they work the way you expect them to work.

86 CHAPTER 22. ENUMERATIONS (AND A COMPLETE PIZZA CLASS)

23
Traits and Abstract Classes

Scala traits are a great feature of the language. As I’ll show in the following lessons,
you can use them just like a Java interface, and you can also use them to “mix in” new
behaviors. Scala classes can also extend multiple traits.

Scala also has the concept of an abstract class, and I’ll show when you should use an
abstract class instead of a trait.

87

88 CHAPTER 23. TRAITS AND ABSTRACT CLASSES

24
Using Traits as Interfaces

One way to use a Scala trait is like a Java interface, where you define the desired
interface for some piece of functionality, but you don’t implement any behavior.

24.1 A simple example

As an example to get us started, imagine that you want to write some code to model
animals like dogs, cats, or any animal that has a tail. In Scala you write a trait to start
that modeling process like this:

trait TailWagger {
def startTail(): Unit
def stopTail(): Unit

}

That code declares a trait named TailWagger that states that any class that extends
TailWagger should implement startTail and stopTail methods. Both of those
methods take no input parameters and have no return value. This code is equivalent
to this Java interface:

public interface TailWagger {
public void startTail();
public void stopTail();

}

24.2 Extending a trait

Given this trait:

89

90 CHAPTER 24. USING TRAITS AS INTERFACES

trait TailWagger {
def startTail(): Unit
def stopTail(): Unit

}

you can write a class that extends the trait and implements those methods like this:

class Dog extends TailWagger {
// the implemented methods
def startTail(): Unit = { println("tail is wagging") }
def stopTail(): Unit = { println("tail is stopped") }

}

Notice that you use the extends keyword to create a class that extends a single trait.

If you paste the TailWagger trait and Dog class into the Scala REPL, you can test the
code like this:

scala> val d = new Dog
d: Dog = Dog@234e9716

scala> d.startTail
tail is wagging

scala> d.stopTail
tail is stopped

That demonstrates how to implement a single Scala trait with a class that extends the
trait.

24.3 Extending multiple traits

Scala lets you create very modular code with traits. For example, you can break down
the attributes of animals into small, logical, modular units:

trait Speaker {
def speak(): String

}

24.3. EXTENDING MULTIPLE TRAITS 91

trait TailWagger {
def startTail(): Unit
def stopTail(): Unit

}

trait Runner {
def startRunning(): Unit
def stopRunning(): Unit

}

Once you have those small pieces, you can create a Dog class by extending all of them,
and implementing the necessary methods:

class Dog extends Speaker with TailWagger with Runner {

// Speaker
def speak(): String = "Woof!"

// TailWagger
def startTail(): Unit = { println("tail is wagging") }
def stopTail(): Unit = { println("tail is stopped") }

// Runner
def startRunning(): Unit = { println("I'm running") }
def stopRunning(): Unit = { println("Stopped running") }

}

Key points of this code:

• Use extends to extend the first trait
• Use with to extend subsequent traits

So far you’ve seen that Scala traits work just like Java interfaces. But there’s more …

92 CHAPTER 24. USING TRAITS AS INTERFACES

25
Using Traits Like Abstract Classes

Traits have much more functionality than what I just showed. You can also add real,
working methods to them and use them like abstract classes, or more accurately, as
mixins.

25.1 A first example

To demonstrate this, here’s a Scala trait that has a concrete method named speak, and
an abstract method named comeToMaster:

trait Pet {
def speak { println("Yo") } // concrete implementation
def comeToMaster(): Unit // abstract

}

When a class extends a trait each definedmethodmust be implemented, so here’s a Dog
class that extends Pet and defines comeToMaster:

class Dog(name: String) extends Pet {
def comeToMaster(): Unit = println("Woo-hoo, I'm coming!")

}

Unless you want to override speak, there’s no need to redefine it, so this is a perfectly
complete Scala class. Now you can create a new Dog like this:

val d = new Dog("Zeus")

Then you can call speak and comeToMaster. This is what it looks like in the REPL:

scala> val d = new Dog("Zeus")
d: Dog = Dog@4136cb25

93

94 CHAPTER 25. USING TRAITS LIKE ABSTRACT CLASSES

scala> d.speak
Yo

scala> d.comeToMaster
Woo-hoo, I'm coming!

25.2 Overriding an implemented method

A class can also override a method that’s defined in a trait. Here’s an example:

class Cat extends Pet {
// override 'speak'
override def speak(): Unit = println("meow")
def comeToMaster(): Unit = println("That's not gonna happen.")

}

The REPL shows how this works:

scala> val c = new Cat
c: Cat = Cat@1953f27f

scala> c.speak
meow

scala> c.comeToMaster
That's not gonna happen.

25.3 Mixing in multiple traits that have behaviors

A great thing about Scala traits is that you can mix multiple traits that have behaviors
into classes. For example, here’s a combination of traits, one of which defines an ab-
stract method, and the others that define concrete method implementations:

trait Speaker {
def speak(): String //abstract

}

25.3. MIXING IN MULTIPLE TRAITS THAT HAVE BEHAVIORS 95

trait TailWagger {
def startTail(): Unit = println("tail is wagging")
def stopTail(): Unit = println("tail is stopped")

}

trait Runner {
def startRunning(): Unit = println("I'm running")
def stopRunning(): Unit = println("Stopped running")

}

Now you can create a Dog class that extends all of those traits while providing behavior
for the speak method:

class Dog(name: String) extends Speaker with TailWagger with Runner {
def speak(): String = "Woof!"

}

And here’s a Cat class:

class Cat extends Speaker with TailWagger with Runner {
def speak(): String = "Meow"
override def startRunning(): Unit = println("Yeah ... I don't run")
override def stopRunning(): Unit = println("No need to stop")

}

The REPL shows that this all works like you’d expect it to work. First, a Dog:

scala> d.speak
res0: String = Woof!

scala> d.startRunning
I'm running

scala> d.startTail
tail is wagging

Then a Cat:

scala> val c = new Cat
c: Cat = Cat@1b252afa

96 CHAPTER 25. USING TRAITS LIKE ABSTRACT CLASSES

scala> c.speak
res1: String = Meow

scala> c.startRunning
Yeah ... I don't run

scala> c.startTail
tail is wagging

25.4 Mixing traits in on the fly

As a last note, another interesting thing you can do with traits that have concrete meth-
ods is that you can mix them in on the fly. For example, given these traits:

trait TailWagger {
def startTail(): Unit = println("tail is wagging")
def stopTail(): Unit = println("tail is stopped")

}

trait Runner {
def startRunning(): Unit = println("I'm running")
def stopRunning(): Unit = println("Stopped running")

}

and this Dog class:

class Dog(name: String)

you can create a Dog instance that mixes in those traits when you create a Dog instance:

val d = new Dog("Fido") with TailWagger with Runner

Once again the REPL shows that this works:

scala> val d = new Dog("Fido") with TailWagger with Runner
d: Dog with TailWagger with Runner = $anon$1@50c8d274

25.5. SEE ALSO 97

scala> d.startTail
tail is wagging

scala> d.startRunning
I'm running

This example works because all of the methods in the TailWagger and Runner traits
are defined (they’re not abstract).

25.5 See also

There are many more things you can do with Scala traits. For more details and exam-
ples, please see the Scala Cookbook1.

1http://kbhr.co/hs-cook

http://kbhr.co/hs-cook
http://kbhr.co/hs-cook

98 CHAPTER 25. USING TRAITS LIKE ABSTRACT CLASSES

26
Abstract Classes

Scala also has a concept of an abstract class that’s similar to Java’s abstract class. But
because traits are so powerful, you rarely need to use an abstract class. In fact, you only
need to use an abstract class when:

• You want to create a base class that requires constructor arguments
• Your Scala code will be called from Java code

26.1 Scala traits don’t allow constructor parameters

Regarding the first reason, Scala traits don’t allow constructor parameters:

// this won't compile
trait Animal(name: String)

Therefore, you need to use an abstract class whenever a base behavior must have con-
structor parameters:

abstract class Animal(name: String)

However, be aware that a class can only extend one abstract class.

26.2 When Scala code will be called from Java code

Regarding the second point, because Java doesn’t know anything about Scala traits, if
you want to call your Scala code from Java code you’ll need to use an abstract class
rather than a trait.

99

100 CHAPTER 26. ABSTRACT CLASSES

I won’t show how to do this in this book, but if you’re interested in an example, please
see the Scala Cookbook1.

26.3 Abstract class syntax

The abstract class syntax is similar to the trait syntax. For example, here’s an abstract
class named Pet that’s similar to the Pet trait I defined in the previous lesson:

abstract class Pet (name: String) {
def speak(): Unit = println("Yo") // concrete implementation
def comeToMaster(): Unit // abstract method

}

Given that abstract Pet class, you can define a Dog class like this:

class Dog(name: String) extends Pet(name) {
override def speak() = println("Woof")
def comeToMaster() = println("Here I come!")

}

The REPL shows that this all works as advertised:

scala> val d = new Dog("Rover")
d: Dog = Dog@51f1fe1c

scala> d.speak
Woof

scala> d.comeToMaster
Here I come!

26.3.1 Notice how name was passed along

All of that code is similar to Java, so I won’t explain it in detail. One thing to notice
is how the name constructor parameter is passed from the Dog class constructor to the

1http://kbhr.co/hs-cook

http://kbhr.co/hs-cook
http://kbhr.co/hs-cook

26.3. ABSTRACT CLASS SYNTAX 101

Pet constructor:

class Dog(name: String) extends Pet(name) {
---- ----

Remember that Pet is declared to take name as a constructor parameter:

abstract class Pet (name: String) { ...

Therefore, this example shows how to pass the constructor parameter from the Dog
class to the abstract Pet class. You can verify that this works with this code:

abstract class Pet (name: String) {
def speak(): Unit = println(s"My name is $name")

}

class Dog(name: String) extends Pet(name)

val d = new Dog("Fido")
d.speak

I encourage you to copy and paste that code into the REPL to be sure it works as you
expect.

102 CHAPTER 26. ABSTRACT CLASSES

27
Collections Classes

If you’re coming to Scala from Java, the best thing you can do is forget about the Java
collections classes and use the Scala collections classes. Speaking from my own expe-
rience, when I first started working with Scala I tried to use Java collections classes
in my Scala code, and in retrospect, that really slowed down my learning process. I
would have been much better off using the Scala collections classes and their methods
because they would have taught me the “Scala way” much more quickly.

27.1 The main Scala collections classes

The main Scala collections classes you’ll use on a regular basis are:

Class Description

ArrayBuffer an indexed, mutable sequence
List a linear (linked list), immutable sequence
Vector an indexed, immutable sequence
Map the base Map (key/value pairs) class
Set the base Set class

Map and Set come in both mutable and immutable versions.

I’ll demonstrate the basics of these classes in the following lessons.

In the following lessons on the collections classes, whenever I use theword
immutable it’s safe to assume that the class is intended for use in a func-
tional programming (FP) style.

103

104 CHAPTER 27. COLLECTIONS CLASSES

28
ArrayBuffer Class

If you’re an OOP developer coming to Scala from Java, the ArrayBuffer class will
probably bemost comfortable for you, so I’ll demonstrate it first. Like Java’s ArrayList
it’s a mutable sequence, so you can use its methods to modify its contents.

To use an ArrayBuffer you must first import it:

import scala.collection.mutable.ArrayBuffer

After it’s imported into the local scope, you create an empty ArrayBuffer like this:

val ints = ArrayBuffer[Int]()
val names = ArrayBuffer[String]()

Once you have an ArrayBuffer you add elements to it in a variety of ways. The +=
method is a common approach:

val ints = ArrayBuffer[Int]()
ints += 1
ints += 2

The REPL shows how += works:

scala> ints += 1
res0: ints.type = ArrayBuffer(1)

scala> ints += 2
res1: ints.type = ArrayBuffer(1, 2)

That’s just one way create an ArrayBuffer and add elements to it. You can also create
an ArrayBuffer with initial elements like this:

val nums = ArrayBuffer(1, 2, 3)

105

106 CHAPTER 28. ARRAYBUFFER CLASS

Here are a few ways you can add more elements to this ArrayBuffer:

// add one element
nums += 4

// add two or more elements
nums += (5, 6)

// add elements from another collection
nums ++= List(7, 8)

You remove elements from an ArrayBuffer with the -= and --= methods:

// remove one element
nums -= 9

// remove two or more elements
nums -= (7, 8)

nums --= Array(5, 6)

Here’s what all of those examples look like in the REPL:

scala> nums += 4
res2: nums.type = ArrayBuffer(1, 2, 3, 4)

scala> nums += (5, 6)
res3: nums.type = ArrayBuffer(1, 2, 3, 4, 5, 6)

scala> nums ++= List(7, 8)
res4: nums.type = ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)

scala> nums -= 9
res5: nums.type = ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)

scala> nums -= (7, 8)
res6: nums.type = ArrayBuffer(1, 2, 3, 4, 5, 6)

28.1. MOREWAYS TOWORKWITH ARRAYBUFFER 107

scala> nums --= Array(5, 6)
res7: nums.type = ArrayBuffer(1, 2, 3, 4)

28.1 More ways to work with ArrayBuffer

There are many more ways to work with an ArrayBuffer. Here are some of the most
common methods:

val a = ArrayBuffer(1, 2, 3) // ArrayBuffer(1, 2, 3)
a.append(4) // ArrayBuffer(1, 2, 3, 4)
a.append(5, 6) // ArrayBuffer(1, 2, 3, 4, 5, 6)
a.appendAll(Seq(7,8)) // ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)
a.clear // ArrayBuffer()
val a = ArrayBuffer(9, 10) // ArrayBuffer(9, 10)
a.insert(0, 8) // ArrayBuffer(8, 9, 10)
a.insert(0, 6, 7) // ArrayBuffer(6, 7, 8, 9, 10)
a.insertAll(0, Vector(4, 5)) // ArrayBuffer(4, 5, 6, 7, 8, 9, 10)
a.prepend(3) // ArrayBuffer(3, 4, 5, 6, 7, 8, 9, 10)
a.prepend(1, 2) // ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
a.prependAll(Array(0)) // ArrayBuffer(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
val a = ArrayBuffer.range('a', 'h') // ArrayBuffer(a, b, c, d, e, f, g)
a.remove(0) // ArrayBuffer(b, c, d, e, f, g)
a.remove(2, 3) // ArrayBuffer(b, c, g)
val a = ArrayBuffer.range('a', 'h') // ArrayBuffer(a, b, c, d, e, f, g)
a.trimStart(2) // ArrayBuffer(c, d, e, f, g)
a.trimEnd(2) // ArrayBuffer(c, d, e)

Please see the Scala Cookbook1 and my big page of ArrayBuffer examples2 for more
details on the ArrayBuffer class.

1http://kbhr.co/hs-cook
2http://kbhr.co/hs-arraybuffer

http://kbhr.co/hs-cook
http://kbhr.co/hs-arraybuffer
http://kbhr.co/hs-cook
http://kbhr.co/hs-arraybuffer

108 CHAPTER 28. ARRAYBUFFER CLASS

29
List Class

The Scala List class is a linear, immutable sequence. This means that it’s a linked-list
that you can’t modify. Any time you want to add or remove List elements, you create
a new List from an existing List.

29.1 Creating Lists

This is how you create an initial List:

val ints = List(1, 2, 3)
val names = List("Joel", "Chris", "Ed")

You can also explicitly declare the List’s type, if you prefer:

val ints: List[Int] = List(1, 2, 3)
val names: List[String] = List("Joel", "Chris", "Ed")

29.2 Adding elements to a List

Because List is immutable you can’t add new elements to it. Instead, you create a new
list by prepending or appending elements to an existing List. For instance, given this
List:

val a = List(1,2,3)

You prepend single elements to a List with the +: method:

val b = 0 +: a

and prepend multiple elements with the ++: method:

val b = List(-1, 0) ++: a

109

110 CHAPTER 29. LIST CLASS

The REPL shows how this works:

scala> val b = 0 +: a
b: List[Int] = List(0, 1, 2, 3)

scala> val b = List(-1, 0) ++: a
b: List[Int] = List(-1, 0, 1, 2, 3)

You append single elements to it while creating a new list with the :+ method:

val b = a :+ 4

and append multiple elements with the ++ method:

val b = a ++ Vector(4, 5)

Again the REPL shows how this works:

scala> val a = List(1,2,3)
a: List[Int] = List(1, 2, 3)

scala> val b = a :+ 4
b: List[Int] = List(1, 2, 3, 4)

scala> val b = a ++ Vector(4, 5)
b: List[Int] = List(1, 2, 3, 4, 5)

Because List is a singly-linked list, you should really only prepend elements to it; ap-
pending elements to it is significantly slower, especially when you work with large se-
quences.

If you want to prepend and append elements to an immutable sequence,
use Vector instead.

Here’s a summary of those examples:

29.3. HOW TO REMEMBER THE METHOD NAMES 111

val a = List(1,2,3)

// prepend
val b = 0 +: a
val b = List(-1, 0) ++: a

// append
val b = a :+ 4
val b = a ++ Vector(4, 5)

Because List is a linked-list class, you also shouldn’t try to access the ele-
ments of large lists by their index value. For instance, if you have a List
with onemillion elements in it, accessing an element like myList(999999)
will take a long time. If you want to access elements like this, use a Vector
or ArrayBuffer instead.

29.3 How to remember the method names

One way I remember those method names is to think that the : character represents
the side that the List is on, so when I use +: I know that the List needs to be on the
right, like this:

0 +: a

and when I use :+ I know the List needs to be on the left:

a :+ 4

There are more technical ways to think about this, but I find this to be a good way to
remember the method names.

One good thing about these method names is that they’re consistent. The same names
are used with other immutable sequence classes, such as Seq and Vector.

29.4 A bit of history

If you’re interested in a little bit of history, the Scala List class is similar to the List
class from the Lisp programming language. Indeed, in addition to the way I showed

112 CHAPTER 29. LIST CLASS

how to create a List earlier, you can also create a List like this:

val list = 1 :: 2 :: 3 :: Nil

The REPL shows how this works:

scala> val list = 1 :: 2 :: 3 :: Nil
list: List[Int] = List(1, 2, 3)

This works because a List is a singly-linked list that ends with the Nil element.

For muchmore information about this see my book, Functional Program-
ming, Simplified1.

29.5 See also

For more information on how to work with Lists, see these resources:

• Scala Cookbook2

• My big page of List class examples3

1http://kbhr.co/hs-fps
2http://kbhr.co/hs-cook
3http://kbhr.co/hs-list

http://kbhr.co/hs-fps
http://kbhr.co/hs-fps
http://kbhr.co/hs-cook
http://kbhr.co/hs-list
http://kbhr.co/hs-fps
http://kbhr.co/hs-cook
http://kbhr.co/hs-list

30
Vector Class

Vector is an indexed, immutable sequence. The “indexed” part of the description
means that you can access Vector elements very rapidly by their index value, such
as accessing listOfPeople(999999).

In general, except for the difference that Vector is indexed and List is not (and List
ends with a Nil element), the two classes have the same methods, so I’ll run through
these examples quickly.

Here are a few ways to create a Vector:

val nums = Vector(1, 2, 3, 4, 5)

val strings = Vector("one", "two")

val peeps = Vector(
Person("Bert"),
Person("Ernie"),
Person("Grover")

)

Because Vector is immutable, you can’t add new elements to it. Instead, you create
a new sequence by appending or prepending elements to an existing Vector. For in-
stance, given this Vector:

val a = Vector(1,2,3)

you append elements with the :+ and ++ methods:

val b = a :+ 4
val b = a ++ Vector(4, 5)

The REPL shows how this works:

113

114 CHAPTER 30. VECTOR CLASS

scala> val a = Vector(1,2,3)
a: Vector[Int] = List(1, 2, 3)

scala> val b = a :+ 4
b: Vector[Int] = List(1, 2, 3, 4)

scala> val b = a ++ Vector(4, 5)
b: Vector[Int] = List(1, 2, 3, 4, 5)

You prepend elements with the +: and ++: methods:

val b = 0 +: a
val b = Vector(-1, 0) ++: a

Once again the REPL shows how this works:

scala> val b = 0 +: a
b: Vector[Int] = List(0, 1, 2, 3)

scala> val b = Vector(-1, 0) ++: a
b: Vector[Int] = List(-1, 0, 1, 2, 3)

Because Vector is an indexed sequence you can prepend and append elements to it,
and the speed of both approaches should be similar.

Finally, you loop over Vector elements just like you do with an ArrayBuffer or List:

val names = Vector("Joel", "Chris", "Ed")
for (name <- names) println(name)

See these resources for more information on how to work with Vector:

• Scala Cookbook1

• My big page of Vector class examples2

1http://kbhr.co/hs-cook
2http://kbhr.co/hs-vector

http://kbhr.co/hs-cook
http://kbhr.co/hs-vector
http://kbhr.co/hs-cook
http://kbhr.co/hs-vector

31
Map Class

The Scala Map class documentation1 describes a Map as an iterable sequence that con-
sists of pairs of keys and values. A simple Map looks like this:

val states = Map(
"AK" -> "Alaska",
"IL" -> "Illinois",
"KY" -> "Kentucky"

)

Scala has both mutable and immutable Map classes. In this lesson I’ll show how to use
themutable class. (Please see the Scala Cookbook2 for examples of the immutable Map
class.)

31.1 Creating a mutable Map

To use the mutable Map class, first import it:

import scala.collection.mutable.Map

Then create a Map like this:

val states = collection.mutable.Map("AK" -> "Alaska")

31.2 Adding elements to a Map

Now you can add a single element to the Map with the += method:

1https://docs.scala-lang.org/overviews/collections/maps.html
2http://kbhr.co/hs-cook

115

https://docs.scala-lang.org/overviews/collections/maps.html
http://kbhr.co/hs-cook
https://docs.scala-lang.org/overviews/collections/maps.html
http://kbhr.co/hs-cook

116 CHAPTER 31. MAP CLASS

states += ("AL" -> "Alabama")

Add multiple elements using +=:

states += ("AR" -> "Arkansas", "AZ" -> "Arizona")

Add elements from another Map using ++=:

states ++= Map("CA" -> "California", "CO" -> "Colorado")

The REPL shows how these examples work:

scala> val states = collection.mutable.Map("AK" -> "Alaska")
states: scala.collection.mutable.Map[String,String] = Map(AK -> Alaska)

scala> states += ("AL" -> "Alabama")
res0: states.type = Map(AL -> Alabama, AK -> Alaska)

scala> states += ("AR" -> "Arkansas", "AZ" -> "Arizona")
res1: states.type = Map(AZ -> Arizona, AL -> Alabama, AR -> Arkansas, AK -> Alaska)

scala> states ++= Map("CA" -> "California", "CO" -> "Colorado")
res2: states.type = Map(CO -> Colorado, AZ -> Arizona, AL -> Alabama,

CA -> California, AR -> Arkansas, AK -> Alaska)

31.3 Removing elements from a Map

You remove elements from a Map using the -= and --= methods while specifying the
desired key values, as shown in these examples:

states -= "AR"
states -= ("AL", "AZ")
states --= List("AL", "AZ")

The REPL shows how these examples work:

scala> states -= "AR"
res3: states.type = Map(CO -> Colorado, AZ -> Arizona, AL -> Alabama,

CA -> California, AK -> Alaska)

31.4. UPDATING MAP ELEMENTS 117

scala> states -= ("AL", "AZ")
res4: states.type = Map(CO -> Colorado, CA -> California, AK -> Alaska)

scala> states --= List("AL", "AZ")
res5: states.type = Map(CO -> Colorado, CA -> California, AK -> Alaska)

31.4 Updating Map elements

With a mutable Map, you update Map elements by reassigning their key to a new value:

states("AK") = "Alaska, A Really Big State"

The REPL shows how this works:

scala> states("AK") = "Alaska, A Really Big State"

scala> states
res6: scala.collection.mutable.Map[String,String] = Map(CO -> Colorado,

CA -> California, AK -> Alaska, A Really Big State)

31.5 Traversing a Map

There are several different ways to iterate over the elements in a map. Given a sample
map:

val ratings = Map(
"Lady in the Water"-> 3.0,
"Snakes on a Plane"-> 4.0,
"You, Me and Dupree"-> 3.5

)

my preferred way to loop over all of the map elements is with this for loop syntax:

for ((k,v) <- ratings) println(s"key: $k, value: $v")

118 CHAPTER 31. MAP CLASS

Using a match expression with the foreach method is also very readable:

ratings.foreach {
case(movie, rating) => println(s"key: $movie, value: $rating")

}

The ratingsmapdata in this example comes from the old-but-good book,
Programming Collective Intelligence3.

31.6 See also

There are other ways to work with Scala maps, and different map classes for different
needs, including ListMap, SortedMap, and more. See these resources for more infor-
mation on how to work with Scala maps:

• Scala Cookbook4

• My big page of Map class examples5

3http://amzn.to/2CPLrb6
4http://kbhr.co/hs-cook
5http://kbhr.co/hs-map

http://amzn.to/2CPLrb6
http://kbhr.co/hs-cook
http://kbhr.co/hs-map
http://amzn.to/2CPLrb6
http://kbhr.co/hs-cook
http://kbhr.co/hs-map

32
Set Class

The Scala Set class1 is an iterable collection with no duplicate elements.

Scala has both mutable and immutable Set classes. In this lesson I’ll show how to use
themutable class. (Please see the Scala Cookbook2 for examples of the immutable Set
class.)

32.1 Adding elements to a Set

To use a mutable Set, first import it:

val set = scala.collection.mutable.Set[Int]()

You add elements to a mutable Set with the +=, ++=, and addmethods. Here are exam-
ples of the first two methods:

set += 1
set += (2, 3)
set += 2
set ++= Vector(4, 5)

The REPL shows how those examples work:

scala> set += 1
res0: scala.collection.mutable.Set[Int] = Set(1)

scala> set += (2, 3)
res1: scala.collection.mutable.Set[Int] = Set(1, 2, 3)

1https://docs.scala-lang.org/overviews/collections/sets.html
2http://kbhr.co/hs-cook

119

https://docs.scala-lang.org/overviews/collections/sets.html
http://kbhr.co/hs-cook
https://docs.scala-lang.org/overviews/collections/sets.html
http://kbhr.co/hs-cook

120 CHAPTER 32. SET CLASS

scala> set += 2
res2: scala.collection.mutable.Set[Int] = Set(1, 2, 3)

scala> set ++= Vector(4, 5)
res3: scala.collection.mutable.Set[Int] = Set(1, 5, 2, 3, 4)

Notice that the second time I try to add the value 2 to the set, the attempt is quietly
ignored.

The add method is unique in that it returns true if an element is added to a set, and
false if it wasn’t added. The REPL shows how it works:

scala> set.add(6)
res4: Boolean = true

scala> set.add(5)
res5: Boolean = false

32.2 Deleting elements from a Set

You remove elements from a set using the -= and --=methods, as shown in the follow-
ing examples:

scala> val set = scala.collection.mutable.Set(1, 2, 3, 4, 5)
set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

// one element
scala> set -= 1
res0: scala.collection.mutable.Set[Int] = Set(2, 4, 3, 5)

// two or more elements (-= has a varags field)
scala> set -= (2, 3)
res1: scala.collection.mutable.Set[Int] = Set(4, 5)

// multiple elements defined in another sequence
scala> set --= Array(4,5)
res2: scala.collection.mutable.Set[Int] = Set()

32.3. MORE SET CLASSES 121

There are more methods for working with sets, including clear and remove, as shown
in these examples:

scala> val set = scala.collection.mutable.Set(1, 2, 3, 4, 5)
set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

// clear
scala> set.clear

scala> set
res0: scala.collection.mutable.Set[Int] = Set()

// remove
scala> val set = scala.collection.mutable.Set(1, 2, 3, 4, 5)
set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

scala> set.remove(2)
res1: Boolean = true

scala> set
res2: scala.collection.mutable.Set[Int] = Set(1, 4, 3, 5)

scala> set.remove(40)
res3: Boolean = false

32.3 More Set classes

Scala has several more Set classes, including SortedSet, LinkedHashSet, and more.
Please see the Scala Set class documentation3 and the Scala Cookbook4 for more de-
tails.

3https://docs.scala-lang.org/overviews/collections/sets.html
4http://kbhr.co/hs-cook

https://docs.scala-lang.org/overviews/collections/sets.html
http://kbhr.co/hs-cook
https://docs.scala-lang.org/overviews/collections/sets.html
http://kbhr.co/hs-cook

122 CHAPTER 32. SET CLASS

33
Anonymous Functions

Earlier in this book I showed that you can create a list of integers like this:

val ints = List(1,2,3)

When you want to create a larger list, you can also create them with the List class
range method, like this:

val ints = List.range(1, 10)

That code creates ints as a list of integers whose values range from 1 to 10. You can
see the result in the REPL:

scala> val ints = List.range(1, 10)
x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

In this lesson I’ll use lists like these to demonstrate a feature of functional programming
known as anonymous functions. It will help to understand how these work before I
demonstrate the most common Scala collections methods in the following lessons.

33.1 Examples

An anonymous function is like a little mini-function. For example, given a list like this:

val ints = List(1,2,3)

I can create a new list by doubling each element in ints, like this:

val doubledInts = ints.map(_ * 2)

Here’s what that example looks like in the REPL:

123

124 CHAPTER 33. ANONYMOUS FUNCTIONS

scala> val doubledInts = ints.map(_ * 2)
doubledInts: List[Int] = List(2, 4, 6)

As that shows, doubledInts is now the list List(2, 4, 6). In this example, this code
is an anonymous function:

_ * 2

This is a shorthand way of saying, “Multiply an element by 2.”

Once you’re comfortable with Scala, this is a common way to write anonymous func-
tions. But if you don’t like this syntax you can also write anonymous functions in a
longer format. I wrote the previous example like this:

val doubledInts = ints.map(_ * 2)

You can also write it like this:

val doubledInts = ints.map((i: Int) => i * 2)
val doubledInts = ints.map(i => i * 2)

All three lines have exactly the same meaning: double each element in ints to create a
new list, doubledInts.

The _ character in Scala is something of a wildcard character. You’ll see it
used in several different places. In this case it’s a shorthand way of saying,
“An element from the list, ints.”

Before I go too much further, if you’re coming to Scala from Java it may help to know
that this map example is the equivalent of this Java code:

List<Integer> ints = new ArrayList<>(Arrays.asList(1, 2, 3));

// the `map` process
List<Integer> doubledInts = new ArrayList<Integer>();
for (int i: ints) {

doubledInts.add(i * 2);
}

33.2. ANONYMOUS FUNCTIONS WITH THE FILTERMETHOD 125

The map example shown is also the same as this Scala code:

val doubledInts = for (i <- ints) yield i * 2

33.2 Anonymous functions with the filter method

Another good way to show anonymous functions is with the filter method of the
List class. Given this List:

val ints = List.range(1, 10)

This is how you create a new list of all integers whose value is greater than 5:

val x = ints.filter(_ > 5)

This is how you create a new list whose values are all less than 5:

val x = ints.filter(_ < 5)

And as a little more complicated example, this is how you create a new list that contains
only even values, by using the modulus operator:

val x = ints.filter(_ % 2 == 0)

If that’s a little confusing, remember that this example can also be written in these other
ways:

val x = ints.filter((i: Int) => i % 2 == 0)
val x = ints.filter(i => i % 2 == 0)

This is what the previous examples look like in the REPL:

scala> val x = ints.filter(_ > 5)
x: List[Int] = List(6, 7, 8, 9)

scala> val x = ints.filter(_ < 5)
x: List[Int] = List(1, 2, 3, 4)

scala> val x = ints.filter(_ % 2 == 0)
x: List[Int] = List(2, 4, 6, 8)

126 CHAPTER 33. ANONYMOUS FUNCTIONS

33.3 Key points

The key points of this lesson are:

• You can write anonymous functions as little snippets of code

• You can use them with standard methods on collections classes, like map and
filter

• With these little snippets of code and powerful methods like those, you can cre-
ate a lot of functionality with very little code

The Scala collections classes contain many methods like map and filter, and they’re a
powerful way to create very expressive code.

33.4 Bonus: Digging a little deeper

You may be wondering how the map and filter examples work. The short answer is
that when map is invoked on a list of integers — a List[Int] to be more precise —
map expects to receive a function that transforms one Int value into another Int value.
Because map expects a function (or method) that transforms one Int to another Int,
this approach also works:

val ints = List(1,2,3)
def double(i: Int): Int = i * 2 //a method that doubles an Int
val doubledInts = ints.map(double)

The last two lines of that example are the same as this:

val doubledInts = ints.map(_ * 2)

Similarly, when called on a List[Int], the filtermethod expects to receive a function
that takes an Int and returns a Boolean value. Therefore, given amethod that’s defined
like this:

def lessThanFive(i: Int): Boolean = if (i < 5) true else false

or more concisely, like this:

def lessThanFive(i: Int): Boolean = (i < 5)

33.4. BONUS: DIGGING A LITTLE DEEPER 127

this filter example:

val ints = List.range(1, 10)
val y = ints.filter(lessThanFive)

is the same as this example:

val y = ints.filter(_ < 5)

Anonymous functions are a big part of Scala, and I write much more about the details
behind this in both of my books, the Scala Cookbook1, and Functional Programming,
Simplified2.

1http://kbhr.co/hs-cook
2http://kbhr.co/hs-fps

http://kbhr.co/hs-cook
http://kbhr.co/hs-fps
http://kbhr.co/hs-fps
http://kbhr.co/hs-cook
http://kbhr.co/hs-fps

128 CHAPTER 33. ANONYMOUS FUNCTIONS

34
Common Methods on Sequences

A great strength of the Scala collections classes is that they come with dozens of pre-
built methods. The benefit of this is that you no longer need to write custom for loops
every time you need to work on a collection. If that doesn’t sound like enough of a
benefit, it also means that you no longer have to read custom for loops written by
other developers. ;)

Because there are so many methods available to you, I’m not going to show them all
here. (I do that in the Scala Cookbook1.) Instead, I’ll just show how to use some of the
most commonly-used methods, including:

• map

• filter

• foreach

• head

• tail

• take, takeWhile

• drop, dropWhile

• find

• reduce, fold

Themethods I’ll showwork on all of the sequential collections classes, including Array,
ArrayBuffer, List, Vector, etc., but in these examples I’ll use a List unless otherwise
specified.

1http://kbhr.co/hs-cook

129

http://kbhr.co/hs-cook
http://kbhr.co/hs-cook

130 CHAPTER 34. COMMONMETHODS ON SEQUENCES

34.1 Note: The methods don’t mutate the list

As a very important note, none of these methods mutate the list that they’re called on.
They all work in a functional style, which means that they return a new sequence with
the modified results.

34.2 Sample lists

In the following examples I’ll use these lists:

val nums = (1 to 10).toList
val names = List("joel", "ed", "chris", "maurice")

This is what these lists look like in the REPL:

scala> val nums = (1 to 10).toList
nums: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> val names = List("joel", "ed", "chris", "maurice")
names: List[String] = List(joel, ed, chris, maurice)

34.3 map

The map method steps through each element in the existing list, applies the algorithm
you supply to each element, and then returns a new list with all of the modified ele-
ments.

Here’s an example of the map method being applied to the nums list:

scala> val doubles = nums.map(_ * 2)
doubles: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

As I wrote in the lesson on anonymous functions, you can also write the anonymous
function like this:

scala> val doubles = nums.map(i => i * 2)
doubles: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

However, in this lesson I’ll always use the first, shorter form.

34.4. FILTER 131

With that background, here are a few more examples of the map method being applied
to the nums and names lists:

scala> val capNames = names.map(_.capitalize)
capNames: List[String] = List(Joel, Ed, Chris, Maurice)

scala> val doubles = nums.map(_ * 2)
doubles: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

scala> val lessThanFive = nums.map(_ < 5)
lessThanFive: List[Boolean] = List(true, true, true, true, false, false, false,

false, false, false)

As that last example shows, it’s perfectly legal — and very common — to use map
to return a list with a type (List[Boolean]) that’s different than the original type
(List[Int]).

34.4 filter

The filtermethod creates a new, filtered list from the given list. Here are a few exam-
ples:

scala> val lessThanFive = nums.filter(_ < 5)
lessThanFive: List[Int] = List(1, 2, 3, 4)

scala> val evens = nums.filter(_ % 2 == 0)
evens: List[Int] = List(2, 4, 6, 8, 10)

scala> val shortNames = names.filter(_.length <= 4)
shortNames: List[String] = List(joel, ed)

34.5 foreach

The foreach method is used to loop over all elements in a collection. As I mentioned
previously, foreach is used for side-effects, such as printing information. Here’s an
example with the names list:

132 CHAPTER 34. COMMONMETHODS ON SEQUENCES

scala> names.foreach(println)
joel
ed
chris
maurice

The nums list is a little long, so I don’t want to print out all of those elements. But a great
thing about Scala’s approach is that you can chain methods together to solve problems.
For example, this is one way to print the first three elements from nums:

nums.filter(_ < 4).foreach(println)

The REPL shows the result:

scala> nums.filter(_ < 4).foreach(println)
1
2
3

34.6 head

The head method comes from Lisp and other functional programming languages. It’s
used to print the first element (the head element) of a list:

scala> nums.head
res0: Int = 1

scala> names.head
res1: String = joel

Because a String is a sequence of characters, you can also treat it like a list. This is how
head works on strings:

scala> "foo".head
res2: Char = f

scala> "bar".head
res3: Char = b

34.7. TAIL 133

34.7 tail

The tail method also comes from Lisp and other functional programming languages.
It’s used to print every element in a list after the head element. Here are a few examples:

scala> nums.tail
res0: List[Int] = List(2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> names.tail
res1: List[String] = List(ed, chris, maurice)

Just like head, tail also works on strings:

scala> "foo".tail
res2: String = oo

scala> "bar".tail
res3: String = ar

34.8 take, takeWhile

The take and takeWhile methods give you a nice way of “taking” the elements out of
a list that you want to create a new list. This is take:

scala> nums.take(1)
res0: List[Int] = List(1)

scala> nums.take(2)
res1: List[Int] = List(1, 2)

scala> names.take(1)
res2: List[String] = List(joel)

scala> names.take(2)
res3: List[String] = List(joel, ed)

134 CHAPTER 34. COMMONMETHODS ON SEQUENCES

And this is takeWhile:

scala> nums.takeWhile(_ < 5)
res4: List[Int] = List(1, 2, 3, 4)

scala> names.takeWhile(_.length < 5)
res5: List[String] = List(joel, ed)

34.9 drop, dropWhile

drop and dropWhile are essentially the opposite of take and takeWhile. This is drop:

scala> nums.drop(1)
res0: List[Int] = List(2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> nums.drop(5)
res1: List[Int] = List(6, 7, 8, 9, 10)

scala> names.drop(1)
res2: List[String] = List(ed, chris, maurice)

scala> names.drop(2)
res3: List[String] = List(chris, maurice)

And this is dropWhile:

scala> nums.dropWhile(_ < 5)
res4: List[Int] = List(5, 6, 7, 8, 9, 10)

scala> names.dropWhile(_ != "chris")
res5: List[String] = List(chris, maurice)

34.10 reduce

When you hear the term, “map reduce,” the “reduce” part refers tomethods like reduce.
It takes a function (or anonymous function) and applies that function to successive
elements in a list, returning a single “reduced” value as its result.

34.10. REDUCE 135

The best way to explain reduce is to create a little helper method you can pass into it.
For example, this is an add method that adds two integers together, but also gives us
some nice debug output:

def add(x: Int, y: Int): Int = {
val theSum = x + y
println(s"received $x and $y, their sum is $theSum")
theSum

}

Now, given that method and this list:

val a = List(1,2,3,4)

this is what happens when I pass the add method into a.reduce:

scala> a.reduce(add)
received 1 and 2, their sum is 3
received 3 and 3, their sum is 6
received 6 and 4, their sum is 10
res0: Int = 10

As that result shows, reduce uses add to reduce the list a into a single value, in this case,
the sum of the integers in the list.

Once you get used to reduce, you’ll write a “sum” algorithm like this:

scala> a.reduce(_ + _)
res0: Int = 10

Similarly, this is what a “product” algorithm looks like:

scala> a.reduce(_ * _)
res1: Int = 24

I know that might be a little mind-blowing if you’ve never seen it before, but because
this is an “introduction” book, I’m going to leave it at that for now. For more details,

136 CHAPTER 34. COMMONMETHODS ON SEQUENCES

please see the Scala Cookbook2, which has over 100 pages on the Scala collections,
and Functional Programming, Simplified3, which has a very detailed chapter on how
methods like reduce and fold work.

It’s worth repeating that reduce is used to walk through each element in
a collection with the algorithm you supply to reduce the collection down
to a single value.

34.11 That’s all for now

There are literally dozens of additional methods on the Scala sequential collections
classes that will keep you from ever needing to write another for loop. However, be-
cause this is a simple introduction book, I won’t cover them all. As mentioned, please
see the Scala Cookbook and Functional Programming, Simplified for many more details.

2http://kbhr.co/hs-cook
3http://kbhr.co/hs-fps

http://kbhr.co/hs-cook
http://kbhr.co/hs-fps
http://kbhr.co/hs-cook
http://kbhr.co/hs-fps

35
Common Map Methods

In this lesson I’ll demonstrate some of the most commonly used Mapmethods. I’ll first
show examples of an immutable map, and then show examples of a mutable map. I
won’t break the Map methods down into individual sections; I’ll just provide a brief
comment before each method.

35.1 Immutable Map examples

Given this immutable Map:

val m = Map(
1 -> "a",
2 -> "b",
3 -> "c",
4 -> "d"

)

Here are some examples of methods available to that Map:

// how to iterate over Map elements
scala> for ((k,v) <- m) printf("key: %s, value: %s\n", k, v)
key: 1, value: a
key: 2, value: b
key: 3, value: c
key: 4, value: d

// how to get the keys from a Map
scala> val keys = m.keys
keys: Iterable[Int] = Set(1, 2, 3, 4)

137

138 CHAPTER 35. COMMONMAP METHODS

// how to get the values from a Map
scala> val values = m.values
values: Iterable[String] = MapLike.DefaultValuesIterable(a, b, c, d)

// how to test if a Map contains a value
scala> val contains3 = m.contains(3)
contains3: Boolean = true

// how to transform Map values
scala> val ucMap = m.transform((k,v) => v.toUpperCase)
ucMap: scala.collection.immutable.Map[Int,String] = Map(1 -> A, 2 -> B, 3 -> C, 4 -> D)

// how to filter a Map by its keys
scala> val twoAndThree = m.filterKeys(Set(2,3))
twoAndThree: scala.collection.immutable.Map[Int,String] = Map(2 -> b, 3 -> c)

// how to take the first two elements from a Map
scala> val firstTwoElements = m.take(2)
firstTwoElements: scala.collection.immutable.Map[Int,String] = Map(1 -> a, 2 -> b)

Note that the last example probably only makes sense for a sorted Map.

35.2 Mutable Map examples

Here are a few examples of methods that are available on the mutable Map class. Given
this initial mutable Map:

val states = scala.collection.mutable.Map(
"AL" -> "Alabama",
"AK" -> "Alaska"

)

Here are some things you can do with a mutable Map:

// add elements with +=
states += ("AZ" -> "Arizona")
states += ("CO" -> "Colorado", "KY" -> "Kentucky")

35.3. SEE ALSO 139

// remove elements with -=
states -= "KY"
states -= ("AZ", "CO")

// update elements by reassigning them
states("AK") = "Alaska, The Big State"

// retain elements by supplying a function that operates on
// the keys and/or values
states.retain((k,v) => k == "AK")

35.3 See also

These resources show many more things you can do with Scala maps:

• The official Scala Map documentation1

• My big page of Map class examples2

1https://docs.scala-lang.org/overviews/collections/maps.html
2http://kbhr.co/hs-map

https://docs.scala-lang.org/overviews/collections/maps.html
http://kbhr.co/hs-map
https://docs.scala-lang.org/overviews/collections/maps.html
http://kbhr.co/hs-map

140 CHAPTER 35. COMMONMAP METHODS

36
A Few Miscellaneous Items

In the next several lessons I’ll cover a few miscellaneous items about Scala:

• Tuples
• An example of using Java’s Swing GUI library with Scala
• A Scala OOP example of a pizza restaurant order-entry system

141

142 CHAPTER 36. A FEWMISCELLANEOUS ITEMS

37
Tuples

A tuple is a neat little class that gives you a simple way to store objects of different types
in a container. Rather than having to create a class to store things in, like this:

class SomeThings(i: Int, s: String, p: Person)

you can just create a tuple like this:

val t = (3, "Three", new Person("Al"))

As shown, just put some elements inside parentheses, and you have a tuple. Scala tuples
can contain between two and 22 items, and I find them useful for those times when I
just need to combine a few things together, and I don’t want the baggage of having to
define a class, especially when that class feels a little “artificial” or phony.

Technically, Scala has classes named Tuple2, Tuple3…up to Tuple22. As
a practicalmatter you rarely need to know this, but I find that it’s also good
to know what’s going on under the hood.

37.1 A few more details

Here’s a two-element tuple:

scala> val d = ("Maggie", 30)
d: (String, Int) = (Maggie,30)

Notice that it contains two different types, String and Int.

Next, given this Person class:

case class Person(name: String)

143

144 CHAPTER 37. TUPLES

Here’s a three-element tuple:

scala> val t = (3, "Three", new Person("Melissa"))
t: (Int, java.lang.String, Person) = (3,Three,Person(Melissa))

There are a few ways to access tuple elements. One approach is to access them by
element number, where the number is preceded by an underscore:

scala> t._1
res1: Int = 3

scala> t._2
res2: java.lang.String = Three

scala> t._3
res3: Person = Person(Melissa)

Another cool approach is to access them like this:

scala> val(x, y, z) = (3, "Three", new Person("Melissa"))
x: Int = 3
y: String = Three
z: Person = Person(Melissa)

Technically this approach involves a form of pattern-matching, and it’s a great way to
assign tuple elements to variables.

37.2 Returning a tuple from a method

A place where this last technique is nice is when you want to return multiple values
from a method. For example, here’s a method that returns a tuple:

def getStockInfo = {
// other code here ...
("NFLX", 100.00, 101.00) // this is a Tuple3

}

37.3. TUPLES AREN’T COLLECTIONS 145

Now you can call that method and assign variable names to the return values:

val (symbol, currentPrice, bidPrice) = getStockInfo

The REPL demonstrates how this works:

scala> val (symbol, currentPrice, bidPrice) = getStockInfo
symbol: String = NFLX
currentPrice: Double = 100.0
bidPrice: Double = 101.0

I don’t use tuples a great deal, but for cases like this where it feels like overkill to create
a class for the method’s return type, I find them convenient.

37.3 Tuples aren’t collections

Technically, tuples aren’t collections classes, they’re just a convenient little container.
Because they aren’t a collection, they don’t have methods like map, filter, etc.

146 CHAPTER 37. TUPLES

38
Scala and Swing

Scala works with Java Swing classes like JFrame, JTextArea, etc., very easily. Here’s an
example of a Scala application that opens a JFrame, adds a few components to it, and
then displays it:

import java.awt.BorderLayout
import java.awt.Dimension
import javax.swing.{JFrame, JScrollPane, JTextArea}

object SwingExample extends App {

val textArea = new JTextArea
textArea.setText("Hello, Swing world")
val scrollPane = new JScrollPane(textArea)

val frame = new JFrame("Hello, Swing")
frame.getContentPane.add(scrollPane, BorderLayout.CENTER)
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
frame.setSize(new Dimension(600, 400))
frame.setLocationRelativeTo(null)
frame.setVisible(true)

}

To see how that code works, save it to a file named SwingExample.scala, then compile
it:

$ scalac SwingExample.scala

and run it:

$ scala SwingExample

147

148 CHAPTER 38. SCALA AND SWING

You should see that it opens a JFrame with a JTextArea inside a JScrollPane.

I’ve written a few Scala/Swing applications totaling thousands of lines of code, and I
haven’t had any compatibility problems.

There’s also a Scala project known as Scala Swing1, which is something
different. That project is an effort to make Swing GUI code look more
like it would have looked if someone knew Scala and then wrote a GUI
framework on top of it.

38.1 Experiment with the code yourself

To experiment with this on your own, see the SwingExample project in this book’s
GitHub repository, which you can find at this URL:

• github.com/alvinj/HelloScalaExamples2

If you know how to use the Scala Build Tool (SBT)3 you can use it to run this applica-
tion, otherwise you can compile and run the source code file that’s in the project’s root
directory using scalac and scala, as shown above.

Note: SBT is introduced later in this book.

1https://github.com/scala/scala-swing
2https://github.com/alvinj/HelloScalaExamples
3http://www.scala-sbt.org/

https://github.com/scala/scala-swing
https://github.com/alvinj/HelloScalaExamples
http://www.scala-sbt.org/
https://github.com/scala/scala-swing
https://github.com/alvinj/HelloScalaExamples
http://www.scala-sbt.org/

39
An OOP Example

In this lesson I share an example of an OOP-style application written with Scala. The
example shows code you might write for a pizza store order-entry system.

39.1 Source code for the example

To experiment with this on your own, please see the PizzaOopExample project in this
book’s GitHub repository:

• github.com/alvinj/HelloScalaExamples1

To compile this project it will help to either a) use Eclipse or IntelliJ IDEA, or b) know
how to use the Scala Build Tool (SBT)2, which I introduce later in this book.

39.2 A few enumerations

As I showed earlier in the book, you create enumerations in Scala like this:

sealed trait Topping
case object Cheese extends Topping
case object Pepperoni extends Topping
case object Sausage extends Topping
case object Mushrooms extends Topping
case object Onions extends Topping

1https://github.com/alvinj/HelloScalaExamples
2http://www.scala-sbt.org/

149

https://github.com/alvinj/HelloScalaExamples
http://www.scala-sbt.org/
https://github.com/alvinj/HelloScalaExamples
http://www.scala-sbt.org/

150 CHAPTER 39. AN OOP EXAMPLE

sealed trait CrustSize
case object SmallCrustSize extends CrustSize
case object MediumCrustSize extends CrustSize
case object LargeCrustSize extends CrustSize

sealed trait CrustType
case object RegularCrustType extends CrustType
case object ThinCrustType extends CrustType
case object ThickCrustType extends CrustType

Even though I haven’t discussed sealed traits or case objects, I think you can still figure
out how this code works.

39.3 A few classes

Given those enumerations, I can now start to create a few pizza-related classes for my
order-entry system. First, here’s a Pizza class:

import scala.collection.mutable.ArrayBuffer

class Pizza (
var crustSize: CrustSize,
var crustType: CrustType,
var toppings: ArrayBuffer[Topping]

)

Next, here’s an Order class, where an Order consists of a mutable list of pizzas and a
Customer:

class Order (
var pizzas: ArrayBuffer[Pizza],
var customer: Customer

)

39.4. ADDING BEHAVIOR TO PIZZA 151

Here’s a Customer class to work with that code:

class Customer (
var name: String,
var phone: String,
var address: Address

)

Finally, here’s an Address class:

class Address (
var street1: String,
var street2: String,
var city: String,
var state: String,
var zipCode: String

)

So far those classes just look like data structures — like a struct in C — so let’s add a
little behavior to them.

39.4 Adding behavior to Pizza

AnOOP-style Pizza class needs a fewmethods to add and remove toppings, and adjust
the crust size and type. Here’s a Pizza class with a few methods added to handle those
behaviors:

class Pizza (
var crustSize: CrustSize,
var crustType: CrustType,
val toppings: ArrayBuffer[Topping]

) {

def addTopping(t: Topping): Unit = { toppings += t }
def removeTopping(t: Topping): Unit = { toppings -= t }
def removeAllToppings(): Unit = { toppings.clear() }

}

152 CHAPTER 39. AN OOP EXAMPLE

You can also argue that a pizza should be able to calculate its ownprice, so here’s another
method you could add to that class:

def getPrice(
toppingsPrices: Map[Topping, Int],
crustSizePrices: Map[CrustSize, Int],
crustTypePrices: Map[CrustType, Int]

): Int = ???

I’m not going to finish implementing this method, but note that it’s a perfectly legal
method as written: it’s legal to use the ??? syntax for the body of a method. Teachers
use it when they don’t want to write out the body of a method, and I sometimes use it
in my own code to say, “This is what my method signature looks like, but I don’t want
to write the method body yet.” A great thing for those times is that this code compiles.

But don’t call that method. If you do, you’ll get a NotImplementedError,
which is very descriptive of the situation.

39.5 Adding behavior to Order

You should be able to do a few things with an order, including:

• Add and remove pizzas
• Update customer information
• Get the order price

Here’s an Order class that lets you do those things:

class Order (
val pizzas: ArrayBuffer[Pizza],
var customer: Customer

) {

def addPizza(p: Pizza): Unit = {
pizzas += p

}

39.6. TESTING THOSE CLASSES 153

def removePizza(p: Pizza): Unit = {
pizzas -= p

}

// need to implement these
def getBasePrice(): Int = ???
def getTaxes(): Int = ???
def getTotalPrice(): Int = ???

}

Once again I’m not concerned with how to calculate the price of an order — I’m trying
to keep things simple — so I leave that as an exercise for the reader.

39.6 Testing those classes

You can use a little “driver” class to test those classes. With the addition of a printOrder
method on the Order class and a toString method in the Pizza class, you’ll find that
this code works as advertised:

import scala.collection.mutable.ArrayBuffer

object MainDriver extends App {

val p1 = new Pizza (
MediumCrustSize,
ThinCrustType,
ArrayBuffer(Cheese)

)

val p2 = new Pizza (
LargeCrustSize,
ThinCrustType,
ArrayBuffer(Cheese, Pepperoni, Sausage)

)

154 CHAPTER 39. AN OOP EXAMPLE

val address = new Address (
"123 Main Street",
"Apt. 1",
"Talkeetna",
"Alaska",
"99676"

)

val customer = new Customer (
"Alvin Alexander",
"907-555-1212",
address

)

val o = new Order(
ArrayBuffer(p1, p2),
customer

)

o.addPizza(
new Pizza (

SmallCrustSize,
ThinCrustType,
ArrayBuffer(Cheese, Mushrooms)

)
)

// print the order
o.printOrder

}

Once again, I encourage you to clone the source code for this project from its Github
repository and make changes to it until you’re comfortable with how it all works.

40
A Scala + JavaFX Example

If you’re ready to tackle a slightly larger Scala application, I wrote a little “Notes” ap-
plication using Scala and JavaFX to accompany this book. If you’d like to see how it
works, I put a short two-minute video introduction at this URL:

• kbhr.co/hs-javafx1

If you want to dig into that application, the source code for the project is at this Github
URL:

• github.com/alvinj/NotesWithScalaJavaFX2

I won’t describe the application here because the video is the best way to show how it
works, and I include a lengthy README file with the source code. So, please see that
Github project for more information.

1http://kbhr.co/hs-javafx
2https://github.com/alvinj/NotesWithScalaJavaFX

155

http://kbhr.co/hs-javafx
https://github.com/alvinj/NotesWithScalaJavaFX
http://kbhr.co/hs-javafx
https://github.com/alvinj/NotesWithScalaJavaFX

156 CHAPTER 40. A SCALA + JAVAFX EXAMPLE

41
SBT and ScalaTest

In the next few lessons I’ll introduce a couple of tools that are commonly used in Scala
projects:

• The The Scala Build Tool (SBT)1

• ScalaTest2, a code testing framework

I’ll begin by showing how to use SBT, and then I’ll show how to use ScalaTest and SBT
together.

1http://www.scala-sbt.org/
2http://www.scalatest.org/

157

http://www.scala-sbt.org/
http://www.scalatest.org/
http://www.scala-sbt.org/
http://www.scalatest.org/

158 CHAPTER 41. SBT AND SCALATEST

42
The Scala Build Tool (SBT)

You can use several different tools to build your Scala projects, including Ant, Maven,
Gradle, andmore. I generally use a tool named SBT1. It was the first build tool that was
specifically created for Scala, and these days it’s supported by Lightbend2, the company
that was co-founded by Scala creator Martin Odersky, and also maintains Akka3, the
Play Framework4, Scala, and more.

If you haven’t already installed SBT, here’s a link to its download page5.

42.1 The SBT directory structure

Like Maven, SBT uses a standard project directory structure. If you use that directory
structure I think you’ll find that it’s relatively simple to build your first projects.

Underneath your main project directory SBT expects a structure that looks like this:

(see the top of the next page)

1http://www.scala-sbt.org/
2https://www.lightbend.com/
3https://akka.io/
4https://www.playframework.com/
5http://www.scala-sbt.org/download.html

159

http://www.scala-sbt.org/
https://www.lightbend.com/
https://akka.io/
https://www.playframework.com/
http://www.scala-sbt.org/download.html
http://www.scala-sbt.org/
https://www.lightbend.com/
https://akka.io/
https://www.playframework.com/
http://www.scala-sbt.org/download.html

160 CHAPTER 42. THE SCALA BUILD TOOL (SBT)

build.sbt
lib/
project/
src/
-- main/

|-- java/
|-- resources/
|-- scala/

-- test/
|-- java/
|-- resources/
|-- scala/

-- target/

42.2 Creating a first SBT project

Creating this directory structure is pretty simple, and I usually use a shell script I wrote
named sbtmkdirs6 to create new projects. But you don’t have to use that script; assum-
ing that you’re using a Unix/Linux system, you can just use these commands to create
your first SBT project directory structure:

mkdir HelloWorld
cd HelloWorld
mkdir -p src/{main,test}/{java,resources,scala}
mkdir lib project target

If you run a find . command after running those commands, you should see this
result:

$ find .
.
./lib
./project
./src
./src/main

6https://alvinalexander.com/sbtmkdirs

https://alvinalexander.com/sbtmkdirs
https://alvinalexander.com/sbtmkdirs

42.3. CREATING A FIRST BUILD.SBT FILE 161

./src/main/java

./src/main/resources

./src/main/scala

./src/test

./src/test/java

./src/test/resources

./src/test/scala

./target

If you see that, you’re in great shape for the next step.

There are other ways to create the files and directories for an SBT project.
One way is to use the sbt new command, which is documented here7. I
don’t show that approach here because some of the files it creates are too
complicated for an introduction like this.

42.3 Creating a first build.sbt file

Now you only need two more things to run a “Hello, world” project:

• A build.sbt file in the root directory of the project
• A Hello.scala file

For a little project like this, the build.sbt file only needs to contain a few lines, like this:

name := "HelloWorld"

version := "1.0"

scalaVersion := "2.12.4"

Each line should be separated by a blank line, as shown. Because SBT projects use a
standard directory structure, SBT already knows everything else it needs to know.

Now you just need to add a little “Hello, world” program.

7http://www.scala-sbt.org/1.x/docs/Hello.html

http://www.scala-sbt.org/1.x/docs/Hello.html
http://www.scala-sbt.org/1.x/docs/Hello.html

162 CHAPTER 42. THE SCALA BUILD TOOL (SBT)

42.4 A “Hello, world” program

In large projects, all of your Scala source code files will go under the src/main/scala
and src/test/scala directories, but for a little sample project like this, you can put your
source code file in the root directory of your project. Go ahead and create a file named
HelloWorld.scala in the root directory with these contents:

object HelloWorld extends App {
println("Hello, world")

}

Now you can use SBT to run your project. Use the sbt run command to compile and
run your project. When you do so, you’ll see output that looks like this:

$ sbt run

Updated file /Users/al/Projects/Scala/Hello/project/build.properties
setting sbt.version to: 0.13.15
[warn] Executing in batch mode.
[warn] For better performance, hit [ENTER] to switch to interactive mode, or
[warn] consider launching sbt without any commands, or explicitly passing 'shell'
[info] Loading project definition from /Users/al/Projects/Scala/Hello/project
[info] Updating {file:/Users/al/Projects/Scala/Hello/project/}hello-build...
[info] Resolving org.fusesource.jansi#jansi;1.4 ...
[info] Done updating.
[info] Set current project to Hello (in build file:/Users/al/Projects/Scala/Hello/)
[info] Updating {file:/Users/al/Projects/Scala/Hello/}hello...
[info] Resolving jline#jline;2.14.5 ...
[info] Done updating.
[info] Compiling 1 Scala source to

/Users/al/Projects/Scala/Hello/target/scala-2.12/classes...
[info] Running HelloWorld
Hello, world
[success] Total time: 4 s, completed Jan 6, 2018 3:08:59 PM

The first time you run sbt it can take a while to run, but after it downloads everything
it needs it gets much faster. As the first comment in that output shows, it can also be
faster to run SBT interactively. To do that, first run the sbt command by itself:

42.5. SEE ALSO 163

> sbt
[info] Loading project definition from /Users/al/Projects/Scala/Hello/project
[info] Set current project to Hello (in build file:/Users/al/Projects/Scala/Hello/)

Then execute its run command like this:

> run
[info] Running HelloWorld
Hello, world
[success] Total time: 0 s, completed Jan 6, 2018 3:12:21 PM

There, that’s much faster.

If you type help at the SBT command prompt you’ll see a list of other commands you
can run. But for now, just type exit (or CTRL-D) to leave the SBT shell.

Note: I’ll show more SBT examples in the lessons that follow.

42.5 See also

I don’t cover them in this book, but other build tools you can use to build Scala projects
are:

• Ant8

• CBT9

• Gradle10

• Maven11

8http://ant.apache.org/
9https://github.com/cvogt/cbt
10https://gradle.org/
11https://maven.apache.org/

http://ant.apache.org/
https://github.com/cvogt/cbt
https://gradle.org/
https://maven.apache.org/
http://ant.apache.org/
https://github.com/cvogt/cbt
https://gradle.org/
https://maven.apache.org/

164 CHAPTER 42. THE SCALA BUILD TOOL (SBT)

43
Using ScalaTest with SBT

ScalaTest1 is one of the main testing libraries for Scala projects, and in this lesson I’ll
show how to create a Scala project that uses ScalaTest, which you can compile, test, and
run with SBT.

43.1 Creating the project directory structure

As with the previous lesson, create an SBT project directory structure for a project
named HelloScalaTest using my sbtmkdirs2 script, or with the following commands:

mkdir HelloScalaTest
cd HelloScalaTest
mkdir -p src/{main,test}/{java,resources,scala}
mkdir lib project target

43.2 Creating the build.sbt file

Next, create a build.sbt file in the root directory of your project with these contents:

name := "HelloScalaTest"

version := "1.0"

scalaVersion := "2.12.4"

1http://www.scalatest.org/
2https://alvinalexander.com/sbtmkdirs

165

http://www.scalatest.org/
https://alvinalexander.com/sbtmkdirs
http://www.scalatest.org/
https://alvinalexander.com/sbtmkdirs

166 CHAPTER 43. USING SCALATEST WITH SBT

libraryDependencies ++= Seq(
"org.scalactic" %% "scalactic" % "3.0.4",
"org.scalatest" %% "scalatest" % "3.0.4" % "test"

)

The first three lines of this file are basically the same as the example in the previous
lesson, and the libraryDependencies lines tell SBT to include the dependencies (jar
files) that are needed to run ScalaTest:

libraryDependencies ++= Seq(
"org.scalactic" %% "scalactic" % "3.0.4",
"org.scalatest" %% "scalatest" % "3.0.4" % "test"

)

The ScalaTest documentation has always been good, and you can always
find the up to date information on what those lines should look like on
the Installing ScalaTest3 page.

43.3 Create a Scala program

Next, create a Scala program that you can use to demonstrate ScalaTest. First, from
the root directory of your project, create a directory under src/main/scala named sim-
pletest:

$ mkdir src/main/scala/simpletest

Then, inside that directory, create a file named Hello.scala with these contents:

package simpletest

object Hello extends App {
val p = new Person("Alvin Alexander")
println(s"Hello ${p.name}")

}

class Person(var name: String)

3http://www.scalatest.org/install

http://www.scalatest.org/install
http://www.scalatest.org/install

43.4. YOUR FIRST SCALATEST TESTS 167

There isn’t much that can go wrong with that source code, but it provides a simple way
to demonstrate ScalaTest. At this point you can run your project with the sbt run
command. Your output should look like this:

> sbt run

[warn] Executing in batch mode.
[warn] For better performance, hit [ENTER] to switch to interactive mode, or
[warn] consider launching sbt without any commands, or explicitly passing 'shell'
...
...
[info] Compiling 1 Scala source to

/Users/al/Projects/Scala/HelloScalaTest/target/scala-2.12/classes...
[info] Running simpletest.Hello
Hello Alvin Alexander
[success] Total time: 4 s, completed Jan 6, 2018 4:38:07 PM

Now let’s create a ScalaTest file.

43.4 Your first ScalaTest tests

ScalaTest is very flexible, and there are a lot of different ways to write tests, but a simple
way to get started is to write tests using the ScalaTest “FunSuite.” To get started, create
a directory named simpletest under the src/test/scala directory:

$ mkdir src/test/scala/simpletest

Next, create a file named HelloTests.scala in that directory with the following contents:

package simpletest

import org.scalatest.FunSuite

class HelloTests extends FunSuite {

// test 1
test("the name is set correctly in constructor") {

val p = new Person("Barney Rubble")
assert(p.name == "Barney Rubble")

168 CHAPTER 43. USING SCALATEST WITH SBT

}

// test 2
test("a Person's name can be changed") {

val p = new Person("Chad Johnson")
p.name = "Ochocinco"
assert(p.name == "Ochocinco")

}

}

This file demonstrates the ScalaTest FunSuite approach. A few important points:

• Your class should extend FunSuite
• You create tests as shown, by giving each test a unique name
• At the end of each test you should call assert to test that a condition has been

satisfied

Using ScalaTest like this is similar to JUnit, so if you’re coming to Scala from Java, I
hope it looks relatively familiar.

Now you can run these tests with the sbt test command. Skipping the first few lines
of output, the result looks like this:

> sbt test
[info] Set current project to HelloScalaTest (in build

file:/Users/al/Projects/Scala/HelloScalaTest/)
[info] HelloTests:
[info] - the name is set correctly in constructor
[info] - a Person's name can be changed
[info] Run completed in 277 milliseconds.
[info] Total number of tests run: 2
[info] Suites: completed 1, aborted 0
[info] Tests: succeeded 2, failed 0, canceled 0, ignored 0, pending 0
[info] All tests passed.
[success] Total time: 1 s, completed Jan 6, 2018 4:46:18 PM

43.5. TDD TESTS 169

43.5 TDD tests

What I just showed is a Test-DrivenDevelopment (TDD) style of testing with ScalaTest.
In the next lesson I’ll show how to write Behavior-Driven Development (BDD) tests
with ScalaTest and SBT.

Keep the project you just created. We’ll use it again in the next lesson.

170 CHAPTER 43. USING SCALATEST WITH SBT

44
Writing BDD-style tests with ScalaTest

and SBT

In the previous lesson I showed how to write Test-Driven Development (TDD) tests
with ScalaTest1. ScalaTest also supports a Behavior-DrivenDevelopment (BDD)2 style
of testing, which I’ll demonstrate next.

This lesson uses the same SBT project as the previous lesson, so you don’t
have to go through the initial setup work again

44.1 Create a Scala class to test

First, create a new Scala class to test. In src/main/scala/simpletest, create a new file
named MathUtils.scala with these contents:

package simpletest

object MathUtils {

def double(i: Int) = i * 2

}

The BDD tests you’ll write next will test this double method.

1http://www.scalatest.org/
2https://dannorth.net/introducing-bdd/

171

http://www.scalatest.org/
https://dannorth.net/introducing-bdd/
http://www.scalatest.org/
https://dannorth.net/introducing-bdd/

172 CHAPTER 44. WRITING BDD-STYLE TESTS WITH SCALATEST AND SBT

44.2 Creating ScalaTest BDD-style tests

Next, create a file named MathUtilsTests.scala in the src/test/scala/simpletest directory,
and put these contents in that file:

package simpletest

import org.scalatest.FunSpec

class MathUtilsSpec extends FunSpec {

describe("MathUtils::double") {

it("should handle 0 as input") {
val result = MathUtils.double(0)
assert(result == 0)

}

it("should handle 1") {
val result = MathUtils.double(1)
assert(result == 2)

}

it("should handle really large integers") (pending)

}

}

As you can see, this style looks different than the TDD tests in the previous lesson. If
you’ve never used a BDD style of testing before, a main idea is that the tests should be
relatively easy to read for one of the “domain experts” whowork with the programmers
to create the application. A few notes about this code:

• This code uses the FunSpec class, whereas the TDD tests used FunSuite
• A set of tests begins with describe
• Each test begins with it. The idea is that the test should read like, “It should do

XYZ…,” where “it” is the double function
• In this example I also showed how to mark a test as “pending”

44.3. RUNNING THE TESTS 173

44.3 Running the tests

With those files in place you can again run sbt test. The important part of the output
looks like this:

> sbt test

[info] HelloTests:
[info] - the name is set correctly in constructor
[info] - a Person's name can be changed
[info] MathUtilsSpec:
[info] MathUtils::double
[info] - should handle 0 as input
[info] - should handle 1
[info] - should handle really large integers (pending)
[info] Total number of tests run: 4
[info] Suites: completed 2, aborted 0
[info] Tests: succeeded 4, failed 0, canceled 0, ignored 0, pending 1
[info] All tests passed.
[success] Total time: 4 s, completed Jan 6, 2018 4:58:23 PM

A few notes about that output:

• sbt test ran the previous HelloTests as well as the new MathUtilsSpec tests
• The pending test shows up in the output and is marked “(pending)”
• All of the tests passed

If you want to have a little fun with this, change one or more of the tests so they inten-
tionally fail, and then see what the output looks like.

44.4 See also

For more information about SBT and ScalaTest, see the following resources:

• In the Scala Cookbook3 I cover both SBT and ScalaTest

3http://kbhr.co/hs-cook

http://kbhr.co/hs-cook
http://kbhr.co/hs-cook

174 CHAPTER 44. WRITING BDD-STYLE TESTS WITH SCALATEST AND SBT

• The main SBT documentation4

• The ScalaTest documentation5

• If you want to look into something different, ScalaCheck is a property-based test-
ing tool, which I introduce here6

4http://www.scala-sbt.org/documentation.html
5http://www.scalatest.org/user_guide
6http://kbhr.co/hs-scalacheck

http://www.scala-sbt.org/documentation.html
http://www.scalatest.org/user_guide
http://kbhr.co/hs-scalacheck
http://www.scala-sbt.org/documentation.html
http://www.scalatest.org/user_guide
http://kbhr.co/hs-scalacheck

45
Functional Programming

Scala lets you write code in an object-oriented programming (OOP) style, a functional
programming (FP) style, and even in a hybrid style, using both approaches in combi-
nation. I assume that you’re coming to Scala from an OOP language like Java, C++,
or C#, so outside of covering Scala classes and methods, I haven’t written any special
sections about OOP in this book. But because the FP style is still relatively new to
many developers, I will provide a brief introduction to Scala’s support for FP in the
next several lessons.

Functional programming is a style of programming that emphasizes writing applica-
tions using only pure functions and immutable values. As I wrote in Functional Pro-
gramming, Simplified1, rather than using that description, it’smore accurate to say that
functional programmers have a strong desire to see their code as algebra — to see the
combination of their functions as a series of algebraic equations. In that regard, you
could say that functional programmers like to think of themselves as mathematicians.
That’s the driving desire that leads them to use only pure functions and immutable
values, because that’s what you use in algebra and other forms of math.

Functional Programming, Simplified is a large book, and there’s no way I can condense
all of that FP knowledge into this little book, but what I can do is give you a little taste
of functional programming, and show some of the tools Scala provides for developers
to write functional code.

1http://kbhr.co/hs-fps

175

http://kbhr.co/hs-fps
http://kbhr.co/hs-fps
http://kbhr.co/hs-fps

176 CHAPTER 45. FUNCTIONAL PROGRAMMING

46
Pure Functions

A first feature Scala offers to help you write functional code is the ability to write pure
functions. In Functional Programming, Simplified1 I define a pure function like this:

• The function’s output depends only on its input variables
• It doesn’t mutate any hidden state
• It doesn’t have any “back doors”: it doesn’t read data from the outside world

(including the console, web services, databases, files, etc.), or write data to the
outside world

As a result of this definition, any time you call a pure function with the same input
value(s), you’ll always get the same result. For example, you can call a double function
an infinite number of times with the input value 2 and you’ll always get the result 4.

46.1 Examples of pure functions

Given that definition of pure functions, as you might imagine, methods like these in
the scala.math.* package are pure functions:

• abs
• ceil
• max
• min

These Scala String methods are also pure functions:

• isEmpty

1http://kbhr.co/hs-fps

177

http://kbhr.co/hs-fps
http://kbhr.co/hs-fps

178 CHAPTER 46. PURE FUNCTIONS

• length
• substring

Many methods on the Scala collections classes also work as pure functions, including
drop, filter, and map.

46.2 Examples of impure functions

Conversely, the following functions are impure because they violate my definition.

The foreach method on collections classes is impure because it’s only used for its side
effects, such as printing to STDOUT.

A great hint that foreach is impure is that it’s method signature declares
that it returns the type Unit. Because it returns nothing, logically the only
reason you ever call it is to achieve some side effect.

Date and time related methods like getDayOfWeek, getHour, and getMinute are all
impure because their output depends on something other than their input parameters.
Their results rely on some form of hidden I/O; hidden input in these examples.

Methods like println and readLine are impure because they interact with the outside
world. A method like Random.nextInt() is impure because it returns a different value
each time it’s called (and also mutates some sort of hidden state).

In general, impure functions do one or more of these things:

• Read hidden inputs, i.e., they access variables and data not explicitly passed into
the function as input parameters

• Write hidden outputs
• Mutate the parameters they are given
• Perform some sort of I/O with the outside world

46.3. BUT IMPURE FUNCTIONS ARE NEEDED… 179

46.3 But impure functions are needed …

Of course an application isn’t very useful if it can’t read or write to the outside world,
so in the Scala Cookbook2 and Functional Programming, Simplified3, I make this rec-
ommendation:

Write the core of your application using pure functions, and then write an
impure “wrapper” around that core to interact with the outside world. (If
you like food analogies, this is like putting a layer of impure icing on top
of a pure cake.)

In Functional Programming, Simplified I discuss ways of handling impure functions in
depth, so please see that book for more details.

46.4 Writing pure functions

Writing pure functions in Scala is one of the simpler parts about functional program-
ming: You just write them using Scala’s method syntax. Here’s a pure function that
doubles the input value it’s given:

def double(i: Int): Int = i * 2

Although I don’t cover recursion in this book, if you like a good “challenge” example,
here’s a pure function that calculates the sum of a list of integers (List[Int]):

def sum(list: List[Int]): Int = list match {
case Nil => 0
case head :: tail => head + sum(tail)

}

Even though I haven’t covered recursion, if you can understand that code, you’ll see
that it meets my definition of a pure function.

2http://kbhr.co/hs-cook
3http://kbhr.co/hs-fps

http://kbhr.co/hs-cook
http://kbhr.co/hs-fps
http://kbhr.co/hs-cook
http://kbhr.co/hs-fps

180 CHAPTER 46. PURE FUNCTIONS

46.5 Key points

The first key point of this lesson is my definition of a pure function:

A pure function is a function that depends only on its declared input pa-
rameters and its internal algorithm to produce its output. It does not read
any other values from “the outside world”— the world outside of the func-
tion’s scope — and it does not modify any values in the outside world.

A second key point is that real-world applications consist of a combination of pure and
impure functions. My personal recommendation is to write the core of your applica-
tion using pure functions, and then to use impure functions to communicate with the
outside world.

47
Passing Functions Around

While every programming language ever created probably lets you write pure func-
tions, a second great FP feature of Scala is that you can create functions as variables,
just like you create String and Int variables. This feature has many benefits, the most
common of which is that it lets you pass functions as parameters into other functions.
You saw that earlier in this book when I demonstrated the map and filter methods:

val nums = (1 to 10).toList

val doubles = nums.map(_ * 2)
val lessThanFive = nums.filter(_ < 5)

In those examples I pass anonymous functions into map and filter.

In the lesson on anonymous functions I demonstrate that this example:

val doubles = nums.map(_ * 2)

is the same as passing a regular function into map:

def double(i: Int): Int = i * 2 //a method that doubles an Int
val doubles = nums.map(double)

As those examples show, Scala clearly lets you pass anonymous functions and regu-
lar functions into other methods. This is a powerful feature that good FP languages
provide.

If you like technical terms, a function that takes another function as an
input parameter is known as aHigher-Order Function (HOF). (And if you
like humor, as someone once wrote, that’s like saying that a class that takes
an instance of another class as a constructor parameter is a Higher-Order
Class.)

181

182 CHAPTER 47. PASSING FUNCTIONS AROUND

47.1 Function or method?

Scala has a special “function” syntax1, but as a practical matter very few people seem
to use it. I think this is because of two reasons:

• That syntax can be hard to read

• You can use def methods just like they are functions

What I mean by that second statement is that when you define a method with def like
this:

def double(i: Int): Int = i * 2

you can then pass double around as if it were a variable, like this:

val x = ints.map(double)

Even though I define double as a method, Scala lets you treat it as a function.

The ability to pass functions around as variables is a distinguishing feature of functional
programming languages. And as you’ve seen in map and filter examples in this book,
the ability to pass functions as parameters into other functions helps you create code
that is concise and still readable.

47.2 A few examples

If you’re not comfortable with the process of passing functions as parameters into other
functions, here are a few more examples you can experiment with in the REPL:

List("foo", "bar").map(_.toUpperCase)
List("foo", "bar").map(_.capitalize)
List("adam", "scott").map(_.length)
List(1,2,3,4,5).map(_ * 10)

1http://kbhr.co/hs-fun

http://kbhr.co/hs-fun
http://kbhr.co/hs-fun

47.3. HOW TOWRITE FUNCTIONS THAT TAKES FUNCTIONS AS
PARAMETERS 183

List(1,2,3,4,5).filter(_ > 2)
List(5,1,3,11,7).takeWhile(_ < 6)

Remember that any of those anonymous functions can also be written as “regular”
functions, so you can write a function like this:

def toUpper(s: String): String = s.toUpperCase

and then pass it into map like this:

List("foo", "bar").map(toUpper)

or this:

List("foo", "bar").map(s => toUpper(s))

Those examples that use a “regular” function are equivalent to these anonymous func-
tion examples:

List("foo", "bar").map(s => s.toUpperCase)
List("foo", "bar").map(_.toUpperCase)

47.3 How to write functions that takes functions as parameters

In both the Scala Cookbook2 and Functional Programming, Simplified3 I demonstrate
how to write methods like map and filter that take other functions as input parame-
ters. I won’t do that in this book, but when you get to the point where you want to write
functions that take other functions as input parameters, it’s a technique you’ll want to
learn.

2http://kbhr.co/hs-cook
3http://kbhr.co/hs-fps

http://kbhr.co/hs-cook
http://kbhr.co/hs-fps
http://kbhr.co/hs-cook
http://kbhr.co/hs-fps

184 CHAPTER 47. PASSING FUNCTIONS AROUND

47.4 See also

If you want to see what Scala’s “function” syntax looks like, see my tutorial, The differ-
ences between val and def in Scala when creating functions4.

4http://kbhr.co/hs-fun

http://kbhr.co/hs-fun
http://kbhr.co/hs-fun
http://kbhr.co/hs-fun

48
No Null Values

Functional programming is like writing a series of algebraic equations, and because
you don’t use null values in algebra, you don’t use null values in FP. That creates an
interesting question: In the situations where you might normally use a null value in
Java/OOP code, what do you do?

Scala’s solution is to use constructs like the Option/Some/None classes. I’ll provide an
introduction to these techniques in this lesson.

48.1 A first example

While this first Option/Some/None example won’t deal with null values, it’s a good way
to demonstrate the Option/Some/None classes, so I’ll start with it.

Imagine that you want to write a method to make it easy to convert strings to integer
values, and you want an elegant way to handle the exceptions that can be thrown when
your method gets a string like "foo" instead of a string that converts to a number, like
"1". A first guess at such a function might look like this:

def toInt(s: String): Int = {
try {

Integer.parseInt(s.trim)
} catch {

case e: Exception => 0
}

}

The idea of this function is that if a string converts to an integer, you return the con-
verted Int, but if the conversion fails you return 0. This might be okay for some pur-
poses, but it’s not really accurate. For instance, the method might have received "0",
but it may have also received "foo" or "bar" or an infinite number of other strings.
This creates a real problem: How do you know when the method really received a "0",

185

186 CHAPTER 48. NO NULL VALUES

or when it received something else? The answer is that with this approach, there’s no
way to know.

48.2 Using Option/Some/None

Scala’s solution to this problem is to use a trio of classes known as Option, Some, and
None. The Some and None classes are subclasses of Option, so the solution works like
this:

• You declare that toInt returns an Option type

• If toInt receives a string it can convert to an Int, you wrap the Int inside of a
Some

• If toInt receives a string it can’t convert, it returns a None

The implementation of the solution looks like this:

def toInt(s: String): Option[Int] = {
try {

Some(Integer.parseInt(s.trim))
} catch {

case e: Exception => None
}

}

This code can be read as, “When the given string converts to an integer, return the in-
teger wrapped in a Somewrapper, such as Some(1). When the string can’t be converted
to an integer, return a None value.”

Here are two REPL examples that demonstrate toInt in action:

scala> val a = toInt("1")
a: Option[Int] = Some(1)

scala> val a = toInt("foo")
a: Option[Int] = None

As shown, the string "1" converts to Some(1) and the string "foo" converts to None.
This is the essence of the Option/Some/None approach. It’s used to handle exceptions

48.3. BEING A CONSUMER OF TOINT 187

(as in this example), and the same technique works for handling null values.

You’ll find this approach used throughout Scala library classes, and in
third-party Scala libraries.

48.3 Being a consumer of toInt

Now imagine that you’re the consumer of the toInt method. You know that the
method returns a subclass of Option[Int], so the question becomes, how do you
work with these return types?

There are two main answers, depending on your needs:

• Use a match expression
• Use a for-expression

There are other approaches, but these are the two main approaches, espe-
cially from an FP standpoint.

48.3.1 Using a match expression

One possibility is to use a match expression, which looks like this:

toInt(x) match {
case Some(i) => println(i)
case None => println("That didn't work.")

}

In this example, if x can be converted to an Int, the first case statement is executed; if
x can’t be converted to an Int, the second case statement is executed.

48.3.2 Using for/yield

Another common solution is to use a for-expression — i.e., the for/yield combination
I showed earlier in this book. To demonstrate this, imagine that you want to convert
three strings to integer values, and then add them together. The for/yield solution looks
like this:

188 CHAPTER 48. NO NULL VALUES

val y = for {
a <- toInt(stringA)
b <- toInt(stringB)
c <- toInt(stringC)

} yield a + b + c

When that expression finishes running, y will be one of two things:

• If all three strings convert to integers, y will be a Some[Int], i.e., an integer
wrapped inside a Some

• If any of the three strings can’t be converted to an inside, y will be a None

You can test this for yourself in the Scala REPL. First, paste these three string variables
into the REPL:

val stringA = "1"
val stringB = "2"
val stringC = "3"

Next, paste the for-expression into the REPL. When you do that, you’ll see this result:

scala> val y = for {
| a <- toInt(stringA)
| b <- toInt(stringB)
| c <- toInt(stringC)
| } yield a + b + c

y: Option[Int] = Some(6)

As shown, y is bound to the value Some(6).

To see the failure case, change any of those strings to something that won’t convert to
an integer. When you do that, you’ll see that y is a None:

y: Option[Int] = None

48.4. OPTIONS CAN BE THOUGHT OF AS A CONTAINER OF 0 OR 1 ITEMS 189

48.3.3 Showing for/yield’s return type

Note that in the previous example you can explicitly show y’s type:

val y: Option[Int] = for { ...

This isn’t required, but this is one situation where I often explicitly show a variable’s
data type because I think it makes the code easier to maintain.

48.4 Options can be thought of as a container of 0 or 1 items

A good way to think about the Option classes is that they represent a container, more
specifically a container that has either zero or one item inside:

• Some is a container with one item in it

• None is a container, but it has nothing in it

If you prefer to think of theOption classes as being like a box, None is a little like getting
an empty box for a birthday gift.

48.5 Using foreach

Because Some and None can be thought of containers, they can further be thought of
as being like collections classes. As a result, they have all of the methods you’d expect
from a collection class, including map, filter, foreach, etc.

This raises an interesting question: What will these two values print, if anything?

toInt("1").foreach(println)
toInt("x").foreach(println)

The answer is that the first example prints the number 1, and the second example
doesn’t print anything. The first example prints 1 because:

• toInt(“1”) evaluates to Some(1)

• The expression evaluates to Some(1).foreach(println)

190 CHAPTER 48. NO NULL VALUES

• The foreachmethod on the Some class knows how to reach inside the Some con-
tainer and extract the value (1) that’s inside it, so it passes that value to println

Similarly, the second example prints nothing because:

• toInt("x") evaluates to None
• The expression evaluates to None.foreach(println)
• The foreachmethod on the None class knows that None doesn’t contain anything,

so it does nothing

Somewhere in Scala’s history, someone noted that the first example (the Some) repre-
sents the “Happy Path” of Option/Some/None approach, and the second example (the
None) represents the “Unhappy Path.” But, despite having two different possible out-
comes, the cool thing about the approach is that the code youwrite to handle an Option
looks exactly the same in both cases. The foreach examples look like this:

toInt("1").foreach(println)
toInt("x").foreach(println)

And the for-expression looks like this:

val y = for {
a <- toInt(stringA)
b <- toInt(stringB)
c <- toInt(stringC)

} yield a + b + c

You only have to write one piece of code to handle both the Happy and Unhappy Paths,
and that simplifies your code. The only time you have to think about whether you got
a Some or a None is when you finally handle the result, such as in a match expression:

toInt(x) match {
case Some(i) => println(i)
case None => println("That didn't work.")

}

48.6. USING OPTION TO REPLACE NULL VALUES 191

48.6 Using Option to replace null values

Another place where a null value can silently creep into your code is with a class like
this:

class Address (
var street1: String,
var street2: String,
var city: String,
var state: String,
var zip: String

)

While every address on Earth has a street1 value, the street2 value is optional. As a
result, that class is subject to this type of abuse:

val santa = new Address(
"1 Main Street",
null, // <-- D'oh! A null value!
"North Pole",
"Alaska",
"99705"

)

To handle situations like this, developers tend to use null values or empty strings, both
of which are hacks to work around the main problem: street2 is an optional field. In
Scala — and other modern languages — the correct solution is to declare up front that
street2 is optional:

class Address (
var street1: String,
var street2: Option[String],
var city: String,
var state: String,
var zip: String

)

192 CHAPTER 48. NO NULL VALUES

With that definition, developers can write more accurate code like this:

val santa = new Address(
"1 Main Street",
None,
"North Pole",
"Alaska",
"99705"

)

or this:

val santa = new Address(
"123 Main Street",
Some("Apt. 2B"),
"Talkeetna",
"Alaska",
"99676"

)

Once you have an optional field like this, you work with it as I showed in the previous
examples: With match expressions, for expressions, and other built-in methods like
foreach.

48.7 Option isn’t the only solution

In this lesson I focused on the Option/Some/None solution, but Scala has a few other
alternatives. For example, a trio of classes known as Try/Success/Failure work in the
same manner, but a) you primarily use these classes when code can throw exceptions,
and b) the Failure class gives you access to the exception message. I commonly use
Try/Success/Failure when writing methods that interact with files, databases, and in-
ternet services, as those functions can easily throw exceptions. I demonstrate these
classes in the Functional Error Handling lesson that follows.

48.8. KEY POINTS 193

48.8 Key points

This lesson was a little longer than the others, so here’s a quick review of the key points:

• Functional programmers don’t use null values
• A common replacement for null values is to use the Option/Some/None classes
• Common ways to work with Option values are match and for expressions
• Options can be thought of as containers of one item (Some) and no items (None)
• You can also use Options when defining constructor parameters

48.9 See also

• Tony Hoare invented the null reference in 1965, and refers to it as his “billion
dollar mistake1.”

• Formuchmore information onOption/Some/None andTry/Success/Failure, see
the Scala Cookbook2, and Functional Programming, Simplified3

1https://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions
2http://kbhr.co/hs-cook
3http://kbhr.co/hs-fps

https://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions
https://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions
http://kbhr.co/hs-cook
http://kbhr.co/hs-fps
https://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions
http://kbhr.co/hs-cook
http://kbhr.co/hs-fps

194 CHAPTER 48. NO NULL VALUES

49
Companion Objects

A companion object in Scala is an object that’s declared in the same file as a class,
and has the same name as the class. For instance, when the following code is saved in a
file named Pizza.scala, the Pizza object is considered to be a companion object to the
Pizza class:

class Pizza {
}

object Pizza {
}

As you’ll see, this has several benefits. First, a companion object and its class can access
each other’s private members (fields and methods). This means that the printFile-
namemethod in this class will work because it can access the private HIDDEN_FILENAME
field in its companion object:

class SomeClass {
def printFilename(): Unit = println(SomeClass.HIDDEN_FILENAME)

}

object SomeClass {
private val HIDDEN_FILENAME = "/tmp/foo.bar"

}

A companion object offers much more functionality than this, and I’ll explain a few of
its most important features in the rest of this lesson.

49.1 Creating new instances without the new keyword

You probably noticed in some examples in this book that you can create new instances
of certain classes without having to use the new keyword before the class name, as in

195

196 CHAPTER 49. COMPANION OBJECTS

this example:

val zenMasters = List(
Person("Nansen"),
Person("Joshu")

)

This functionality comes from the use of companion objects. What happens is that
when you define an apply method in a companion object, it has a special meaning to
the Scala compiler. There’s a little syntactic sugar baked into Scala that lets you type
this code:

val p = Person("Frank")

and during the compilation process the compiler turns that code into this code:

val p = Person.apply("Frank")

The apply method in the companion object acts as a factory method1, and Scala’s syn-
tactic sugar lets you use the syntax shown, creating new class instances without using
the new keyword.

49.1.1 Enabling that functionality

To demonstrate how this works, here’s a class named Person along with an apply
method in its companion object:

(see the next page)

1https://alvinalexander.com/java/java-factory-pattern-example

https://alvinalexander.com/java/java-factory-pattern-example
https://alvinalexander.com/java/java-factory-pattern-example

49.1. CREATING NEW INSTANCES WITHOUT THE NEW KEYWORD 197

class Person {
var name = ""

}

object Person {
def apply(name: String): Person = {

var p = new Person
p.name = name
p

}
}

To test this code, paste both the class and the object into the Scala REPL at the same
time using this technique:

• Start the REPL from your command line (with the scala command)
• Type :paste and press the [Enter] key
• The REPL should respond with this text:

// Entering paste mode (ctrl-D to finish)

• Now paste both the class and object into the REPL
• Press Ctrl-D to finish the “paste” process

When that process works you should see this output in the REPL:

defined class Person
defined object Person

I use this :paste technique because the REPL requires that a class and its
companion object be entered at the same time.

Now you can create a new instance of the Person class like this:

val p = Person.apply("Frank")

That code directly calls apply in the companion object. More importantly, you can
also create a new instance like this:

198 CHAPTER 49. COMPANION OBJECTS

val p = Person("Frank")

and multiple instances like this:

val zenMasters = List(
Person("Nansen"),
Person("Joshu")

)

To be clear, what happens in this process is:

• You type something like val p = Person("Frank")
• The Scala compiler sees that there is no new keyword before Person
• The compiler looks for an applymethod in the companion object of the Person

class that matches the type signature you entered
• If it finds an apply method, it uses it; if it doesn’t, you get a compiler error

49.1.2 Creating multiple constructors

You can create multiple applymethods in a companion object to providemultiple con-
structors. This code shows how to create both one- and two-argument constructors:

class Person {
var name = ""
var age = 0

}

object Person {

// a one-arg constructor
def apply(name: String): Person = {

var p = new Person
p.name = name
p

}

49.2. ADDING AN UNAPPLYMETHOD 199

// a two-arg constructor
def apply(name: String, age: Int): Person = {

var p = new Person
p.name = name
p.age = age
p

}

}

If you paste that code into the REPL as before, you’ll see that you can create new Person
instances like this:

val fred = Person("Fred")
val john = Person("John", 42)

When running tests like this, it’s best to clear the REPL’s memory. To do
this, use the :reset command inside the REPL before using the :paste
command.

49.2 Adding an unapply method

Just as adding an apply method in a companion object lets you construct new object
instances, adding an unapply lets you de-construct object instances. I’ll demonstrate
this with an example.

Here’s a different version of a Person class and a companion object:

class Person(var name: String, var age: Int)

object Person {
def unapply(p: Person): String = s"${p.name}, ${p.age}"

}

Notice that the companion object defines an unapply method. That method takes an
input parameter of the type Person, and returns a String. To test the unapplymethod
manually, first create a new Person instance:

val p = new Person("Lori", 29)

200 CHAPTER 49. COMPANION OBJECTS

Then test unapply like this:

val result = Person.unapply(p)

This is what the unapply result looks like in the REPL:

scala> val result = Person.unapply(p)
result: String = Lori, 29

As shown, unapply de-constructs the Person instance it’s given. In Scala, when you
put an unapplymethod in a companion object, it’s said that you’ve created an extractor
method, because you’ve created a way to extract the fields out of the object.

49.2.1 unapply can return different types

In that example unapply returns a String, but you can write it to return anything.
Here’s an example that returns the two fields in a tuple:

class Person(var name: String, var age: Int)

object Person {
def unapply(p: Person): Tuple2[String, Int] = (p.name, p.age)

}

Here’s what that method looks like in the REPL:

scala> val result = Person.unapply(p)
result: (String, Int) = (Lori,29)

Because this unapply method returns the class fields as a tuple, you can also do this:

scala> val (name, age) = Person.unapply(p)
name: String = Lori
age: Int = 29

49.3. KEY POINTS 201

49.2.2 unapply extractors in the real world

A benefit of using unapply to create an extractor is that if you follow the proper Scala
conventions, it enables a convenient form of pattern-matching in match expressions.

I’ll discuss that more in the next lesson, but as you’ll see, the story gets even better: You
rarely need to write an unapplymethod yourself. Instead, what happens is that you get
apply and unapplymethods for free when you create your classes as case classes rather
than as the “regular” Scala classes you’ve seen so far. We’ll dive into case classes in the
next lesson.

49.3 Key points

As a brief summary, the key points of this lesson are:

• A companion object is an object that’s declared in the same file as a class, and
has the same name as the class

• A companion object and its class can access each other’s private members
• A companion object’s applymethod lets you create new instances of a class with-

out using the new keyword
• A companion object’s unapply method lets you de-construct an instance of a

class into its individual components

202 CHAPTER 49. COMPANION OBJECTS

50
Case Classes

Another Scala feature that provides support for functional programming is the case
class. A case class has all of the functionality of a regular class, and more. When the
compiler sees the case keyword in front of a class, it generates code for you, with the
following benefits:

• Case class constructor parameters are public val fields by default, so accessor
methods are generated for each parameter.

• An apply method is created in the companion object of the class, so you don’t
need to use the new keyword to create a new instance of the class.

• An unapplymethod is generated, which lets you easily use case classes in match
expressions and other situations.

• A copymethod is generated in the class. I never use this in Scala/OOP code, but
I use it all the time in Scala/FP.

• equals and hashCode methods are generated, which let you compare objects
and easily use them as keys in maps.

• A default toString method is generated, which is helpful for debugging.

I’ll demonstrate how all of these features work in the following sections.

50.1 An apply method means you don’t need new

When you define a class as a case class, you don’t have to use the new keyword to create
a new instance:

scala> case class Person(name: String, relation: String)
defined class Person

// "new" not needed before Person
scala> val christina = Person("Christina", "niece")
christina: Person = Person(Christina,niece)

203

204 CHAPTER 50. CASE CLASSES

As discussed in the previous lesson, this works because a method named apply is gen-
erated inside Person’s companion object.

50.2 No mutator methods

Case class constructor parameters are val fields by default, so an accessor method is
generated for each parameter:

scala> christina.name
res0: String = Christina

But, mutator methods are not generated:

// can't mutate the `name` field
scala> christina.name = "Fred"
<console>:10: error: reassignment to val

christina.name = "Fred"
^

Because in FP you never mutate data structures, it makes sense that constructor fields
default to val.

50.3 An unapply method

Case classes automatically generate an unapplymethod, so you don’t have to write one.
To demonstrate this, imagine that you have this trait:

trait Person {
def name: String

}

Then, create these case classes to extend that trait:

case class Student(name: String, year: Int) extends Person
case class Teacher(name: String, specialty: String) extends Person

Because those are defined as case classes — and a case class has a built-in unapply
method — you can write a method that takes a Person input parameter and matches

50.3. AN UNAPPLYMETHOD 205

on the Student and Teacher types:

def getPrintableString(p: Person): String = p match {
case Student(name, year) =>

s"$name is a student in Year $year."
case Teacher(name, whatTheyTeach) =>

s"$name teaches $whatTheyTeach."
}

Notice these two patterns in the case statements:

case Student(name, year) =>
case Teacher(name, whatTheyTeach) =>

Those patterns work because Student and Teacher have unapplymethods whose type
signature conforms to a certain standard. Technically, the specific type of pattern
matching shown in these examples is known as a constructor pattern.

The Scala standard is that an unapply method returns the case class con-
structor fields in a tuple that’s wrapped in an Option. I showed the “tuple”
part of the solution in the previous lesson.

To show how that code works, create an instance of Student and Teacher:

val s = Student("Al", 1)
val t = Teacher("Bob Donnan", "Mathematics")

Next, this is what the output looks like in theREPLwhen you call getPrintableString
with those two instances:

scala> getPrintableString(s)
res0: String = Al is a student in Year 1.

scala> getPrintableString(t)
res1: String = Bob Donnan teaches Mathematics.

All of this content on unapplymethods and extractors is a little advanced
for an introductory book like this, but because case classes are an impor-
tant FP topic, I thought it was better to cover them, rather than skipping
over them.

206 CHAPTER 50. CASE CLASSES

50.4 copy method

A case class also has an automatically-generated copymethod that’s extremely helpful
when you need to perform the process of a) cloning an object and b) updating one or
more of the fields during the cloning process. As an example, this is what the process
looks like in the REPL:

scala> case class BaseballTeam(name: String, lastWorldSeriesWin: Int)
defined class BaseballTeam

scala> val cubs1908 = BaseballTeam("Chicago Cubs", 1908)
cubs1908: BaseballTeam = BaseballTeam(Chicago Cubs,1908)

scala> val cubs2016 = cubs1908.copy(lastWorldSeriesWin = 2016)
cubs2016: BaseballTeam = BaseballTeam(Chicago Cubs,2016)

As shown, when you use the copy method, all you have to do is supply the names of
the fields you want to modify during the cloning process.

Because you never mutate data structures in FP, this is how you create a new instance
of a class from an existing instance. I refer to this process as “update as you copy,” and
I discuss this process in detail in my book, Functional Programming, Simplified1.

50.5 equals and hashCode methods

Case classes also have automatically-generated equals and hashCode methods, so in-
stances can be compared:

scala> case class Person(name: String, relation: String)
defined class Person

scala> val christina = Person("Christina", "niece")
christina: Person = Person(Christina,niece)

1http://kbhr.co/hs-fps

http://kbhr.co/hs-fps
http://kbhr.co/hs-fps

50.6. TOSTRINGMETHODS 207

scala> val hannah = Person("Hannah", "niece")
hannah: Person = Person(Hannah,niece)

scala> christina == hannah
res1: Boolean = false

These methods also let you easily use your objects in collections like sets and maps.

50.6 toString methods

Finally, case classes also have a good default toStringmethod implementation, which
at the very least is helpful when debugging code:

scala> christina
res0: Person = Person(Christina,niece)

50.7 The biggest advantage

While all of these features are great benefits to functional programming, as they write
in the book, Programming in Scala2, “the biggest advantage of case classes is that they
support pattern matching.” Pattern matching is a major feature of FP languages, and
Scala’s case classes provide a simple way to implement pattern matching in match ex-
pressions and other areas.

2http://amzn.to/2BW22sN

http://amzn.to/2BW22sN
http://amzn.to/2BW22sN

208 CHAPTER 50. CASE CLASSES

51
Case Objects

Before we jump into case objects, I should provide a little background on regular Scala
objects. As I mentioned early on in this book, you use a Scala object when you want
to create a singleton object. As the official Scala documentation states1, “Methods and
values that aren’t associated with individual instances of a class belong in singleton
objects, denoted by using the keyword object instead of class.”

A common example of this is when I create a “utilities” object, such as this one:

object PizzaUtils {
def addTopping(p: Pizza, t: Topping): Pizza = ...
def removeTopping(p: Pizza, t: Topping): Pizza = ...
def removeAllToppings(p: Pizza): Pizza = ...

}

Or this one:

object FileUtils {
def readTextFileAsString(filename: String): Try[String] = ...
def copyFile(srcFile: File, destFile: File): Try[Boolean] = ...
def readFileToByteArray(file: File): Try[Array[Byte]] = ...
def readFileToString(file: File): Try[String] = ...
def readFileToString(file: File, encoding: String): Try[String] = ...
def readLines(file: File, encoding: String): Try[List[String]] = ...

}

This is the most common way I use the Scala object construct.

1https://docs.scala-lang.org/tour/singleton-objects.html

209

https://docs.scala-lang.org/tour/singleton-objects.html
https://docs.scala-lang.org/tour/singleton-objects.html

210 CHAPTER 51. CASE OBJECTS

51.1 Case objects

A case object is like an object, but just like a case class has more features than a
regular class, a case object has more features than a regular object. It specifically has
two important features that make it useful:

• It is serializable

• It has a default hashCode implementation

These features make a case object useful when you don’t know how it will be used by
other developers, such as if it will be sent across a network and referenced in a different
JVM (such as with the Akka2 actors platform, where you can send messages between
JVM instances).

Because of these features, I primarily use case objects (instead of regular objects) in
two places:

• When creating enumerations

• When creating containers for “messages” that I want to pass between other ob-
jects (such as with Akka)

51.2 Creating enumerations with case objects

As I showed earlier in this book, you create enumerations in Scala like this:

sealed trait Topping
case object Cheese extends Topping
case object Pepperoni extends Topping
case object Sausage extends Topping
case object Mushrooms extends Topping
case object Onions extends Topping

2https://akka.io/

https://akka.io/
https://akka.io/

51.3. USING CASE OBJECTS AS MESSAGES 211

sealed trait CrustSize
case object SmallCrustSize extends CrustSize
case object MediumCrustSize extends CrustSize
case object LargeCrustSize extends CrustSize

sealed trait CrustType
case object RegularCrustType extends CrustType
case object ThinCrustType extends CrustType
case object ThickCrustType extends CrustType

Then later in your code you use those enumerations like this:

case class Pizza (
crustSize: CrustSize,
crustType: CrustType,
toppings: Seq[Topping]

)

51.3 Using case objects as messages

Another place where case objects come in handy is when you want to model the con-
cept of a “message.” For example, imagine that you’re writing an application like Ama-
zon’s Alexa, and you want to be able to pass around “speak” messages like, “speak the
enclosed text,” “stop speaking,” “pause,” and “resume.” In Scala you create singleton
objects for those messages like this:

case class StartSpeakingMessage(textToSpeak: String)
case object StopSpeakingMessage
case object PauseSpeakingMessage
case object ResumeSpeakingMessage

Notice that StartSpeakingMessage is defined as a case class rather than a case object.
This is because an object can’t have any constructor parameters.

Given those messages, if Alexa was written using the Akka library, you’d find code like
this in a “speak” class:

212 CHAPTER 51. CASE OBJECTS

class Speak extends Actor {
def receive = {

case StartSpeakingMessage(textToSpeak) =>
// code to speak the text

case StopSpeakingMessage =>
// code to stop speaking

case PauseSpeakingMessage =>
// code to pause speaking

case ResumeSpeakingMessage =>
// code to resume speaking

}
}

This is a good, safe way to pass messages around in a Scala application.

51.4 See also

I introduce the Akka actor library later in this book, and I’ve also written several tuto-
rials that demonstrate how it uses case objects for messages:

• An Akka “Hello, world” example3

• A ‘Ping Pong’ Scala Akka actors example4

• How to send and receive messages between Scala/Akka actors5

• “Alexa written with Akka” = Aleka6

• An Akka actors ‘remote’ example7

3http://kbhr.co/hs-akka1
4http://kbhr.co/hs-akka2
5http://kbhr.co/hs-akka3
6http://kbhr.co/hs-akka4
7http://kbhr.co/hs-akka5

http://kbhr.co/hs-akka1
http://kbhr.co/hs-akka2
http://kbhr.co/hs-akka3
http://kbhr.co/hs-akka4
http://kbhr.co/hs-akka5
http://kbhr.co/hs-akka1
http://kbhr.co/hs-akka2
http://kbhr.co/hs-akka3
http://kbhr.co/hs-akka4
http://kbhr.co/hs-akka5

52
Functional Error Handling

Because functional programming is like algebra, there are no null values or exceptions.
But of course you can still have exceptions when you try to access servers that are down
or files that are missing, so what can you do?

52.1 Option/Some/None

I already demonstrated one of the techniques to handle errors in Scala: The trio of
classes named Option, Some, and None. Instead of writing amethod like toInt to throw
an exception or return a null value, you declare that the method returns an Option, in
this case an Option[Int]:

def toInt(s: String): Option[Int] = {
try {

Some(Integer.parseInt(s.trim))
} catch {

case e: Exception => None
}

}

Later in your code you handle the result from toInt using match and for expressions:

toInt(x) match {
case Some(i) => println(i)
case None => println("That didn't work.")

}

val y = for {
a <- toInt(stringA)
b <- toInt(stringB)
c <- toInt(stringC)

} yield a + b + c

213

214 CHAPTER 52. FUNCTIONAL ERROR HANDLING

I discussed these approaches in the “No Null Values” lesson, so I won’t repeat that
discussion here.

52.2 Try/Success/Failure

Another trio of classes named Try, Success, and Failure work just like Option, Some,
and None, but with two nice features:

• Try makes it very simple to catch exceptions

• Failure contains the exception message

Here’s the toInt method re-written to use these classes. First, you have to import the
classes into the current scope:

import scala.util.{Try,Success,Failure}

After that, this is what toInt looks like:

def toInt(s: String): Try[Int] = Try {
Integer.parseInt(s.trim)

}

As you can see, that’s quite a bit shorter than the Option/Some/None approach. The
REPL demonstrates how this works. First, the success case:

scala> val a = toInt("1")
a: scala.util.Try[Int] = Success(1)

Second, this is what it looks like when Integer.parseInt throws an exception:

scala> val b = toInt("boo")
b: scala.util.Try[Int] =

Failure(java.lang.NumberFormatException: For input string: "boo")

As that output shows, the Failure that’s returned by toInt contains the reason for the
failure, i.e., the exception message.

There are quite a few ways to work with the results of a Try — including the ability to
“recover” from the failure— but common approaches still involve using match and for

52.3. EVEN MORE … 215

expressions:

toInt(x) match {
case Success(i) => println(i)
case Failure(s) => println(s"Failed. Reason: $s")

}

val y = for {
a <- toInt(stringA)
b <- toInt(stringB)
c <- toInt(stringC)

} yield a + b + c

Note that if the three string values all convert to Int values, the for expression returns
the Int wrapped in a Success:

scala.util.Try[Int] = Success(6)

Conversely, if any of the strings won’t convert to an Int, the for expression returns a
Failure that contains the exception information:

scala.util.Try[Int] =
Failure(java.lang.NumberFormatException: For input string: "a")

52.3 Even more …

There are other combinations of classes from third party libraries that you can also use
to catch and handle exceptions, but Option/Some/None and Try/Success/Failure are
my two favorites. You canusewhatever you like, but I generally useTry/Success/Failure
when dealing with code that can throw exceptions — because I almost always want the
exception message — and I use Option/Some/None in other places, such as to avoid
using null values.

216 CHAPTER 52. FUNCTIONAL ERROR HANDLING

53
Concurrency

In the next several lessons I’ll demonstrate two of Scala’s main techniques for writing
parallel and concurrent applications: Akka actors and the Scala Future.

217

218 CHAPTER 53. CONCURRENCY

54
Akka Actors

In this lesson I provide a brief introduction to the Akka actors library1. In the lesson
you’ll learn about:

• Actors and the actor model
• Akka’s benefits

At the end I also share a link to a video of an Alexa-like application I wrote using actors

If you’re already comfortable with the Actor model, feel free to move on to
the next lesson, where I share some Scala/Akka code.

54.1 Actors and the Actor Model

The first thing to know about actors is the actor model, which is a mental model of
how to think about a system built with actors. Within that model the first concept to
understand is an actor:

• An actor is a long-running process that runs in parallel to the main application
thread, and responds to messages that are sent to it.

• An actor is the smallest unit of functionality when building an actor-based sys-
tem, just like a class is the smallest unit in an OOP system.

• Like a class, an actor encapsulates state and behavior.
• You can’t peek inside an actor to get its state. You can send an actor a message

requesting state information (like texting a person to ask how they’re feeling),
but you can’t reach in and execute one of its methods or access its fields (just like
you can’t peak inside someone else’s brain).

1http://akka.io/

219

http://akka.io/
http://akka.io/

220 CHAPTER 54. AKKA ACTORS

• An actor has a mailbox (an inbox), and the actor’s purpose in life is to process
the messages in its mailbox.

• You communicate with an actor by sending it an immutable message (typically
as a case class or case object in Akka). Thesemessages go directly into the actor’s
mailbox.

• When an actor receives a message, it’s like taking a letter out of its mailbox. It
opens the letter, processes the message using one of its algorithms, then moves
on to the next message in the mailbox. If there are no more messages, the actor
waits until it receives one.

Akka experts recommend thinking of an actor as being like a person, such as a person
in a business organization:

• You can’t know what’s going on inside another person. All you can do is send
them a message and wait for their response.

• An actor has one parent, known as a supervisor. In Akka, that supervisor is the
actor that created it.

• An actor may have children. For instance, a President in a business may have
a number of Vice Presidents. Those VPs are like children of the President, and
theymay also havemany subordinates. (And those subordinatesmay havemany
subordinates, etc.)

• An actor may have siblings — i.e., other actors at the same level. For instance,
there may be 10 VPs in an organization, and they’re all at the same level in the
organization chart.

54.1.1 Actors should delegate their work

There’s one more important point to know about actors: As soon as an actor receives a
message, it should delegate its work. Actors need to be able to respond to messages in
their mailbox as fast as possible, so the actor mantra is, “Delegate, delegate, delegate.”

If you think of an actor as being a person, imagine that one message includes a task
that’s going to take a month to complete. If the actor worked on that one task for a
month, it wouldn’t be able to respond to its mailbox for a month. That’s bad. But if the
actor delegates that task to one of its children, it can respond to the next message in its
mailbox immediately (and delegate that as well).

54.2. AKKA FEATURES 221

54.2 Akka features

Akka is the main actor library for Scala, and it’s a great way to build massively parallel
systems. From my own experience I can say that all of these industry buzzwords can
be used to describe Akka:

• asynchronous
• event-driven
• message-driven
• reactive
• scalable (“scale up” and “scale out”)
• concurrent and parallel
• non-blocking
• location transparency
• resilient and redundant (no single point of failure with multiple, distributed

servers)
• fault-tolerant

All of those features are great, but the first great feature is that Akka and the actormodel
greatly simplify the process of working with long-running threads. In fact, when work-
ing with Akka, you never really think about threads, you just write actors to respond
to messages in a non-blocking manner, and the threads take of themselves.

54.3 Akka benefits

In addition to those features, here are some concrete benefits of using Akka actors,
mostly coming from Lightbend’s Akka Quickstart Guide2 and the Akka.io website3:

• Actors aremuch easier to work with than threads; you program at amuch higher
level of abstraction.

• Actors let you build systems that scale up, using the resources of a server more
efficiently, and scale out, using multiple servers.

2http://developer.lightbend.com/guides/akka-quickstart-scala/
3http://akka.io

http://developer.lightbend.com/guides/akka-quickstart-scala/
http://akka.io
http://developer.lightbend.com/guides/akka-quickstart-scala/
http://akka.io

222 CHAPTER 54. AKKA ACTORS

• Performance: Actors have been shown to process up to 50 million mes-
sages/second on a single machine.

• Lightweight: Each instance consumes only a few hundred bytes, which allows
millions of concurrent actors to exist in a single application (allowing ~2.5 mil-
lion actors per GB of heap).

• Location transparency: The Akka system constructs actors from a factory and
returns references to the instances. Because the location of actors doesn’t matter
— they can be running on the current server or some other server — actor in-
stances can start, stop, move, and restart to scale up and down, as well as recover
from unexpected failures.

54.4 A video example

Way back in 2011 I started developing a “personal assistant” named SARAH, which
was based on the computer assistant of the same name on the television show Eureka4.
SARAH is like having the Amazon Echo5 running on your computer. You speak to it
to access and manage information:

• Get news headlines from different sources

• Get weather reports and stock prices

• Manage a “to-do list”

• Control iTunes with voice commands

• Check your email

• Perform Google searches

Beyond just responding to voice commandswith spoken and displayed output, SARAH
also has long-running background tasks — small pieces of software I call “agents” —
so it can do other things:

• Tell me when I receive new email from people I’m interested in

• Report the time at the top of every hour (“The time is 11 a.m.”)

4http://www.imdb.com/title/tt0796264/
5http://amzn.to/2y4bgoJ

http://www.imdb.com/title/tt0796264/
http://amzn.to/2y4bgoJ
http://www.imdb.com/title/tt0796264/
http://amzn.to/2y4bgoJ

54.5. WHAT’S NEXT 223

The entire application is based on Akka actors. I found Akka to be a terrific way to
write an application that had many threads running simultaneously.

For more information on SARAH, see the “Sarah - Version 2” video at alvinalexan-
der.com/sarah6. I haven’t worked on SARAH in a while, but it gives you can idea of
what can be done with Akka actors.

For a simpler version of SARAH that you can get started with today, see
my tutorial, “Alexa written with Akka” = Aleka7

54.5 What’s next

Given this background, the next lesson shows several examples of how to use Akka
actors.

From the Akka FAQ8, the name Akka “is the name of a beautiful Swedish
mountain in the northern part of Sweden called Laponia … Akka is also
the name of a goddess in the Sámi (the native Swedish population)mythol-
ogy. She is the goddess that stands for all the beauty and good in the world
…Also, the nameAKKA is a palindrome of the letters A andK, as inActor
Kernel.”

6https://alvinalexander.com/sarah
7http://kbhr.co/hs-akka4
8https://doc.akka.io/docs/akka/2.5/additional/faq.html

https://alvinalexander.com/sarah
https://alvinalexander.com/sarah
http://kbhr.co/hs-akka4
https://doc.akka.io/docs/akka/2.5/additional/faq.html
https://alvinalexander.com/sarah
http://kbhr.co/hs-akka4
https://doc.akka.io/docs/akka/2.5/additional/faq.html

224 CHAPTER 54. AKKA ACTORS

55
Akka Actor Examples

In this lesson I’ll show two examples of applications that use Akka actors, both of which
can help you get started with my larger “Alexa written with Akka” = Aleka1 application.

55.1 Source code

I originally wrote this lesson for my book, Functional Programming, Simplified2, so
you can find the source code for it at this URL:

• github.com/alvinj/FPAkkaHelloWorld3

55.2 An Akka “Hello, world” example

First, let’s look at an example of how to write a “Hello, world” application using Akka.

55.2.1 Writing a “Hello” actor

An actor is an instance of the akka.actor.Actor class, and once it’s created it starts
running on a parallel thread, and all it does is respond to messages that are sent to it.
For this “Hello, world” example I want an actor that responds to “hello” messages, so I
start with code like this:

1http://kbhr.co/hs-akka4
2http://kbhr.co/hs-fps
3https://github.com/alvinj/FPAkkaHelloWorld

225

http://kbhr.co/hs-akka4
http://kbhr.co/hs-fps
https://github.com/alvinj/FPAkkaHelloWorld
http://kbhr.co/hs-akka4
http://kbhr.co/hs-fps
https://github.com/alvinj/FPAkkaHelloWorld

226 CHAPTER 55. AKKA ACTOR EXAMPLES

case class Hello(msg: String)

class HelloActor extends Actor {
def receive = {

case Hello(s) => {
println(s"you said '$s'")
println(s"$s back at you!\n")

}
case _ => println("huh?")

}
}

In the first line of code I define a case class named Hello. The preferred way to send
messages withAkka is to use instances of case classes and case objects because they sup-
port immutability and pattern-matching. Therefore, I define Hello as a simplewrapper
around a string.

After that, I define HelloActor as an instance of Actor. The body of HelloActor is
just the receivemethod, which you implement to define the actor’s behavior, i.e., how
the actor responds to the messages it receives.

The way this code works is that when HelloActor receives a new message in its inbox,
receive is triggered as a response to that event, and the incoming message is tested
against receive’s case statements. In this example, if the message is of the type Hello,
the first case statement handles themessage; if themessage is anything else, the second
case statement is triggered. (The second case statement is a “catch-all” statement that
handles all unknown messages.)

Of course actors get more complicated than this, but that’s the essence of the actor
programming pattern:

• You create case classes and case objects to define the types of messages you want
your actor to receive

• Because the only way the rest of your code can interact with the actor is by send-
ing messages to it, those classes and objects become your actor’s API

• Inside the actor’s receive method you define how you want to respond to each
message type

At a high level, that’s all there is to writing actor code.

55.2. AN AKKA “HELLO, WORLD” EXAMPLE 227

55.2.2 A test program

Now all you need is a little driver program to test the actor. This one will do:

object AkkaHelloWorld extends App {

// an actor needs an ActorSystem
val system = ActorSystem("HelloSystem")

// create and start the actor
val helloActor = system.actorOf(

Props[HelloActor],
name = "helloActor"

)

// send the actor two known messages
helloActor ! Hello("hello")
helloActor ! Hello("buenos dias")

// send it an unknown message
helloActor ! "hi!"

// shut down the system
system.terminate()

}

Here’s how that code works. First, actors need an ActorSystem4 that they can run in,
so you create one like this:

val system = ActorSystem("HelloSystem")

Just give the ActorSystem a unique name, and you’re ready to go.

The ActorSystem is the main construct that takes care of the gory thread
details behind the scenes. Per the Akka website, “An ActorSystem is a

4https://doc.akka.io/api/akka/current/akka/actor/ActorSystem.html

https://doc.akka.io/api/akka/current/akka/actor/ActorSystem.html
https://doc.akka.io/api/akka/current/akka/actor/ActorSystem.html

228 CHAPTER 55. AKKA ACTOR EXAMPLES

heavyweight structure that will allocate 1…N Threads, so create one per
logical application … It is also the entry point for creating or looking up
actors.”

Next, as that quote states, you create new actors with the ActorSystem, so this is how
you create an instance of a HelloActor:

val helloActor = system.actorOf(
Props[HelloActor],
name = "helloActor"

)

Depending on your needs there are a few variations of that method, but the important
part is that you create an instance of HelloActor by calling actorOf on the ActorSys-
tem.

Besides the required import statements, that’s the entire setup process. At this point
the helloActor instance is up and running in parallel with themain application thread,
and you can send it messages. This is how you send it a message:

helloActor ! Hello("hello")

This line of code can be read as, “Send themessage Hello("hello") to the actor named
helloActor, and don’t wait for a reply.”

The ! character is how you send a message to an actor. More precisely, it’s how you
send a message to an actor without waiting for a reply back from the actor. This is by
far the most common way to send a message to an actor; in almost every situation
you don’t want to wait for a reply back from the actor, because that would cause your
application’s thread to block at that point, and blocking is bad.

This case statement inside HelloActor handles Hello messages that are received:

// in HelloActor
case Hello(s) => {

println(s"you said '$s'")
println(s"$s back at you!\n")

}

55.3. A SECOND EXAMPLE 229

Inside that case statement I just print two lines of output, but in real world applications
this is where you normally call other functions or delegate work to a child actor.

After I send the two Hello messages to the HelloActor, I send it this message:

helloActor ! "hi!"

Because HelloActor doesn’t know how to handle a Stringmessage, it responds to this
message with its “catch-all” case statement:

// in HelloActor
case _ => println("huh?")

At this point the AkkaHelloWorld application reaches this line of code, which shuts
down the ActorSystem:

system.terminate()

That’s the entire Akka “Hello, world” application.

I encourage you to work with the source code for this lesson. In the HelloWorld.scala
file, add new messages (as case classes and case objects), and then add new case state-
ments to the receive method in HelloActor to respond to those messages, and add
methods inside HelloActor to process those messages. Keep playing with it until
you’re sure you know how it all works.

55.3 A second example

As a slightly more complicated example, the Echo.scala file in the same repository con-
tains an Akka application that responds to whatever you type at the command line.
First, the application defines a case class and a case object that are used to send and
receive messages:

case class Message(msg: String)
case object Bye

230 CHAPTER 55. AKKA ACTOR EXAMPLES

Next, this is how the EchoActor responds to the messages it receives:

class EchoActor extends Actor {
def receive = {

case Message(s) => println("\nyou said " + s)
case Bye => println("see ya!")
case _ => println("huh?")

}
}

That follows the same pattern I showed in the first example.

Finally, here’s a driver program you can use to test EchoActor:

object EchoMain extends App {

// an actor needs an ActorSystem
val system = ActorSystem("EchoSystem")

// create and start the actor
val echoActor = system.actorOf(

Props[EchoActor],
name = "echoActor"

)

// prompt the user for input
var input = ""
while (input != "q") {

print("type something (q to quit): ")
input = StdIn.readLine()
echoActor ! Message(input)

}

echoActor ! Bye

// shut down the system
system.terminate()

}

55.4. MORE EXAMPLES 231

Notice that after the ActorSystem and echoActor are created, the application sits in a
loop prompting you for input, until you enter the character q. Once you type q and the
loop terminates, the echoActor is sent one last message:

echoActor ! Bye

After that, the system shuts down.

This is what the output of the application looks like when you run it and type a few
things at the command line:

type something (q to quit): hello
you said hello

type something (q to quit): hola
you said hola

type something (q to quit): q
you said q

bye!

55.4 More examples

I could keep showing more examples, but the pattern is the same:

• Create case classes and case objects for the messages you want your actor to han-
dle.

• Write your actor’s receive method so it responds to those messages as desired.

• Send messages to your actors using !.

If you’d like to work with a more-complicated example that builds on this second ex-
ample, I created an Akka application that works a little like SARAH and the Amazon
Echo5, albeit at your computer’s command line. See this page on my website for more
details:

5http://amzn.to/2xwmlgM

http://amzn.to/2xwmlgM
http://amzn.to/2xwmlgM
http://amzn.to/2xwmlgM

232 CHAPTER 55. AKKA ACTOR EXAMPLES

• alvinalexander.com/amazon-echo-akka6

That web page describes how the “Akkazon Ekko” application works, but here’s a quick
example of some command-line input and output with it, where ekko is the applica-
tion’s command line prompt:

ekko: weather
stand by ...
The current temperature is 78 degrees, and the sky is partly cloudy.

ekko: forecast
stand by ...
Here's the forecast.
For Sunday, a low of 59, a high of 85, and Partly Cloudy skies.
For Monday, a low of 53, a high of 72, and Scattered Thunderstorms skies.

ekko: todo add Wake Up
1. Wake Up

Please see that web page for more details and the source code.

55.5 Where Akka fits in

As these examples show, an actor is an instance of the Actor class. Once created, an
actor resides in memory, running in parallel to the main application thread, waiting
for messages to appear in its inbox. When it receives a new message, it responds to the
message with the case statements defined in its receive method. Therefore, an actor-
based application can be any application that takes advantage of that programming
model.

Depending on your needs, actors can provide a great approach for reactive program-
ming because they can help to keep your application’s UI responsive. In something
like a Swing (or JavaFX) GUI application, the process looks like this:

6https://alvinalexander.com/amazon-echo-akka

https://alvinalexander.com/amazon-echo-akka
https://alvinalexander.com/amazon-echo-akka

55.6. KEY POINTS 233

• The user provides input through the GUI.
• Your GUI’s event-handling code responds to that input event by sending a mes-

sage to the appropriate actor.
• The Swing “Event DispatchThread” (EDT) remains responsive because the work

is not being handled on the EDT.
• When the actor receives the message, it immediately delegates that work to a

child actor. (I didn’t show that process in this book, but you can find examples
on my website and in the Scala Cookbook7.)

• When the actor (and its children) finishes processing the message, it sends a
message back, and thatmessage results in theUI being updated (eventually being
handled by SwingUtilities.invokeLater(), in the case of Swing).

This is exactly the way SARAH8 works.

While the actor model isn’t the only way to handle this situation, actors are a great
choice when you want to create parallel processes that will live in memory for a long
time, and have messages that they know how to respond to.

In the case of SARAH, it has many actors that know how to do different kinds of work,
including:

• Actors to get news headlines, check my email, get stock quotes, search Google,
get Twitter trends, etc.

• Actors to represent a mouth, ears, and brain, where the “ear actor” listens to
your computer’s microphone, the “mouth actor” speaks through the computer’s
speakers, and the “brain actor” knows how to process inputs and outputs, and
delegate work to all of the other actors.

55.6 Key points

It bears repeating that the key things to know about Akka actors are:

• The primary purpose of actors is to create objects that live in RAM for a long

7http://kbhr.co/hs-cook
8https://alvinalexander.com/sarah

http://kbhr.co/hs-cook
https://alvinalexander.com/sarah
http://kbhr.co/hs-cook
https://alvinalexander.com/sarah

234 CHAPTER 55. AKKA ACTOR EXAMPLES

time, run on parallel threads, communicate only by message-passing, and know
how to respond to one or more messages. (Futures, which you’ll see in the next
lesson, are better for “one shot,” short-lived concurrency needs.)

• Messages are defined as case classes and case objects, and become the API for
your actors.

• Actors respond to messages with pattern-matching statements in their receive
method.

• To keep actors responsive, top-level actors should quickly delegate their work.
• Actors don’t share any state with other actors, so there is nomutable, shared state

in your application.

Akka is intended for building reactive, responsive, event-driven (message-driven), scal-
able systems, and the actor model greatly simplifies the process of working with multi-
ple long-running threads.

55.7 See also

• The Akka website9

• Akka is based on the actor model, which is defined on Wikipedia10

• I wrote about Akka Actors in depth in the Scala Cookbook11

• I wrote an introductory ‘Ping Pong’ Akka actors example12

• I wrote a little Akka actors video game13

• You can learn more about SARAH at alvinalexander.com/sarah14

• My “Akkazon Ekko” application15, which is a simple version of SARAH
• Akka was inspired by the Erlang language16, which is used to “build massively

scalable soft real-time systems with requirements on high availability”

9http://akka.io/
10https://en.wikipedia.org/wiki/Actor_model
11http://kbhr.co/hs-cook
12http://kbhr.co/hs-akka2
13http://kbhr.co/hs-akka7
14https://alvinalexander.com/sarah
15http://kbhr.co/hs-akka6
16https://www.erlang.org/

http://akka.io/
https://en.wikipedia.org/wiki/Actor_model
http://kbhr.co/hs-cook
http://kbhr.co/hs-akka2
http://kbhr.co/hs-akka7
https://alvinalexander.com/sarah
http://kbhr.co/hs-akka6
https://www.erlang.org/
http://akka.io/
https://en.wikipedia.org/wiki/Actor_model
http://kbhr.co/hs-cook
http://kbhr.co/hs-akka2
http://kbhr.co/hs-akka7
https://alvinalexander.com/sarah
http://kbhr.co/hs-akka6
https://www.erlang.org/

56
Futures

While an Akka actor runs for a long time and is intended to handle many messages
over its lifetime, a Scala Future1 is intended as a one-shot, “handle this potentially long-
running computation, and call me back with a result when you’re done” construct.

In this lesson I’ll show how to use futures, including how to run several futures in
parallel and combine their results in a for-expression, along with a few other useful
Future methods.

Note: If you find the name Future to be confusing in the following exam-
ples, I recommend replacing it with the name ConcurrentTask2, which I
personally find easier to understand.

56.1 Source code

You can find the source code for this lesson at this Github URL:

• github.com/alvinj/HelloScalaFutures3

56.2 An example in the REPL

A Scala Future is used to create a little pocket of concurrency that you use for one-shot
needs. You typically use it when you need to call an algorithm that runs an indeter-
minate amount of time — such as calling a web service or executing a long-running
algorithm — so you therefore want to run it off of the main application thread.

1https://www.scala-lang.org/api/current/scala/concurrent/Future\protect\char”0024\relax.html
2https://alvinalexander.com/scala/scala-future-semantics
3https://github.com/alvinj/HelloScalaFutures

235

https://www.scala-lang.org/api/current/scala/concurrent/Future\protect \char "0024\relax .html
https://alvinalexander.com/scala/scala-future-semantics
https://github.com/alvinj/HelloScalaFutures
https://www.scala-lang.org/api/current/scala/concurrent/Future\protect \char "0024\relax .html
https://alvinalexander.com/scala/scala-future-semantics
https://github.com/alvinj/HelloScalaFutures

236 CHAPTER 56. FUTURES

To demonstrate how this works, let’s start with an example of a Future in the Scala
REPL. First, paste in these import statements:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Failure, Success}

Now, you can create a future. Here’s a future that sleeps for a few seconds and then
returns the value 42:

scala> val a = Future { Thread.sleep(2000); 42 }
a: scala.concurrent.Future[Int] = Future(<not completed>)

While that’s a simple example, it shows the basic approach: Just construct a new Future
with your long-running algorithm.

Because Future has a map function, you use it as usual:

scala> val b = a.map(_ * 2)
b: scala.concurrent.Future[Int] = Future(<not completed>)

This shows Future(<not completed>), but if you check b’s value you’ll see that it con-
tains the expected result of 84:

scala> b
res1: scala.concurrent.Future[Int] = Future(Success(84))

Notice that the 84 you expected is wrapped in a Success, which is further wrapped in
a Future. This is a key point to know: The value in a Future is always an instance of
one of the Try types: Success or Failure. Therefore, when working with the result of
a future, use the usual Try-handling techniques, or one of the other Future callback
methods.

One commonly used callback method is onComplete, which takes a partial function4,
in which you should handle the Success and Failure cases, like this:

4http://kbhr.co/hs-pfuncs

http://kbhr.co/hs-pfuncs
http://kbhr.co/hs-pfuncs

56.3. AN EXAMPLE APPLICATION 237

a.onComplete {
case Success(value) => println(s"Got the callback, value = $value")
case Failure(e) => e.printStackTrace

}

When you paste that code in the REPL you’ll see the result:

Got the callback, value = 42

There are other ways to process the results from futures, and I’ll list the most common
methods later in this lesson.

56.3 An example application

I like to use the following application to introduce futures because it’s relatively simple,
and it shows several key points about how to work with them:

• How to create futures
• How to combine multiple futures in a for expression to obtain a single result
• How to work with that result once you have it

56.3.1 A potentially slow-running method

First, imagine that you need to create a method that accesses a web service to get the
current price of a stock. Because it’s a web service it can be slow to return, and even
fail. As a result, you define the method to run as a Future. It takes a stock symbol
as an input parameter and returns the stock price as a Double inside a Future, so its
signature looks like this:

def getStockPrice(stockSymbol: String): Future[Double] = ???

I don’t want to write a method that accesses a web service for this tutorial, so I’ll mock
up a method that has a variable run time:

def getStockPrice(stockSymbol: String): Future[Double] = Future {
val r = scala.util.Random
val randomSleepTime = r.nextInt(3000)
val randomPrice = r.nextDouble * 1000

238 CHAPTER 56. FUTURES

sleep(randomSleepTime)
randomPrice

}

That method sleeps a random time up to 3000 ms, and also returns a random stock
price. Notice how simple it is to create a method that runs as a Future: I just pass a
block of code into the Future constructor to create the method body.

Next, imagine that youwant to get three stock prices in parallel, and return their results
once all three return. To do so, you’d write code like this:

package futures

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.Future
import scala.util.{Failure, Success}

object MultipleFutures extends App {

val startTime = currentTime

// (a) create three futures
val aaplFuture = getStockPrice("AAPL")
val amznFuture = getStockPrice("AMZN")
val googFuture = getStockPrice("GOOG")

// (b) get a combined result in a for-expression
val result: Future[(Double, Double, Double)] = for {

aapl <- aaplFuture
amzn <- amznFuture
goog <- googFuture

} yield (aapl, amzn, goog)

// (c) do whatever you need to do with the results
result.onComplete {

case Success(x) => {
val totalTime = deltaTime(startTime)
println(s"In Success case, time delta: ${totalTime}")
println(s"The stock prices are: $x")

56.3. AN EXAMPLE APPLICATION 239

}
case Failure(e) => e.printStackTrace

}

// important for a little parallel demo: need to keep
// the jvm’s main thread alive
sleep(5000)

def sleep(time: Long): Unit = Thread.sleep(time)

// a simulated web service
def getStockPrice(stockSymbol: String): Future[Double] = Future {

val r = scala.util.Random
val randomSleepTime = r.nextInt(3000)
println(s"For $stockSymbol, sleep time is $randomSleepTime")
val randomPrice = r.nextDouble * 1000
sleep(randomSleepTime)
randomPrice

}

def currentTime = System.currentTimeMillis()
def deltaTime(t0: Long) = currentTime - t0

}

I encourage you to clone my Github project and put that code in your favorite IDE
before continuing this lesson. When you do so, first run it to make sure it works as
expected, then change it as desired. I recommend adding debug println statements
to the code so you can completely understand it.

The Github repository for this lesson also contains a class named Multi-
pleFuturesWithDebugOutput that contains the same code with a lot of
debug println statements.

56.3.2 Creating the futures

Let’s walk through that code to see how it works. First, I create three futures with these
lines of code:

240 CHAPTER 56. FUTURES

val aaplFuture = getStockPrice("AAPL")
val amznFuture = getStockPrice("AMZN")
val googFuture = getStockPrice("GOOG")

As you saw, getStockPrice is defined like this:

def getStockPrice(stockSymbol: String): Future[Double] = Future { ...

If you remember the lesson on companion objects, the way the body of that method
works is that the code in between the curly braces is passed into the apply method of
Future’s companion object, so the compiler translates that code to something like this:

def getStockPrice ... = Future.apply { method body here }

An important thing to know about Future is that it immediately begins running the
block of code inside the curly braces. It isn’t like the Java Thread, where you create
an instance and later call its start method. You can see this very clearly in the debug
output of the MultipleFuturesWithDebugOutput example, where the debug output in
getStockPrice immediately prints three times when the AAPL, AMZN, and GOOG
futures are created.

The three method calls eventually return the simulated stock prices. In fact, people
often use the word eventually with futures because you typically use them when the
return time of the algorithm is indeterminate: you don’t know when you’ll get a result
back, you just hope to get a successful result back “eventually.”

56.3.3 The for expression

The for expression in the application looks like this:

val result: Future[(Double, Double, Double)] = for {
aapl <- aaplFuture
amzn <- amznFuture
goog <- googFuture

} yield (aapl, amzn, goog)

You can read this as, “Whenever aapl, amzn, and goog all return with their values, com-
bine them in a tuple, and assign that value to the variable result.” As shown, result

56.3. AN EXAMPLE APPLICATION 241

has the type Future[(Double, Double, Double)], which is a tuple that contains three
Double values, wrapped in a Future container.

It’s important to know that the application’s main thread doesn’t stop when getStock-
Price is called, and it doesn’t stop at the for-expression either. In fact, if you print the
result from System.currentTimeMillis() before and after the for expression, you
probably won’t see a difference of more than a few milliseconds. You can see that for
yourself in the MultipleFuturesWithDebugOutput example.

56.3.4 onComplete

The final part of the application looks like this:

result.onComplete {
case Success(x) => {

val totalTime = deltaTime(startTime)
println(s"In Success case, time delta: ${totalTime}")
println(s"The stock prices are: $x")

}
case Failure(e) => e.printStackTrace

}

As I showed before, onComplete is a method that’s available on a Future, and you
use it to process a future’s result as a side effect. In the same way that the foreach
method on collections classes returns Unit and is only used for side effects, onComplete
returns Unit and you only use it for side effects like printing the results, updating aGUI,
updating a database, etc.

You can read that code as, “Whenever result has a final value — i.e., after all of the
futures return in the for expression — come here. If everything returned successfully,
run the println statement shown in the Success case. Otherwise, if an exception was
thrown, go to the Failure case and print the exception’s stack trace.”

As the code implies, it’s completely possible that a Futuremay fail. For example, imag-
ine that you call a web service, but the web service is down. That Future instance
will contain an exception, and when you call result.onComplete, control flows to the
Failure case.

242 CHAPTER 56. FUTURES

It’s important to note that just as the JVM’smain thread didn’t stop at the for-expression,
it doesn’t block here, either. The code inside onComplete doesn’t execute until after the
for-expression assigns a value to result.

56.3.5 The sleep call

A final point to note about small examples like this is that you need to have a sleep
call at the end of your App:

sleep(5000)

That call keeps the main thread of the JVM alive for five seconds. If you don’t include
a call like this, the JVM’s main thread will exit before you get a result from the three
futures, which are running on other threads. This isn’t usually a problem in the real
world, but it’s a problem for little demos like this.

56.3.6 The other code

There are a few println statements in the code that use these methods:

def currentTime = System.currentTimeMillis()
def deltaTime(t0: Long) = System.currentTimeMillis() - t0

I only added a few println statements in this code so you can get an idea of how
the application works. But as you’ll see in the Github repository, I added many more
println statements to the MultipleFuturesWithDebugOutput example so you can see
exactly how futures work.

56.4 Other Future methods

Futures have other methods that you can use. Common callback methods are:

• onComplete
• onSuccess
• onFailure

56.5. KEY POINTS 243

In addition to thosemethods, futures havemethods that you’ll find on Scala collections
classes, including:

• filter

• foreach

• map

Other useful and well-named methods include:

• andThen

• fallbackTo

• recoverWith

I discuss these methods in my article, Simple concurrency with Scala Futures5.

56.5 Key points

While this was a short introduction, I hope those examples give you an idea of how
Scala futures work. A few key points about futures are:

• You construct futures to run tasks off of the main thread

• A benefit of futures over threads is that they come with a variety of callback
methods that simplify the process of workingwith concurrent threads, including
the handling of exceptions and thread management

• A future starts running as soon as you construct it

• If you’re using multiple futures to yield a single result, you’ll often want to com-
bine them in a for-expression

• Use onComplete and other callback methods to process the final result(s)

• The value in a Future is always an instance of one of the Try types: Success or
Failure

5http://kbhr.co/hs-future1

http://kbhr.co/hs-future1
http://kbhr.co/hs-future1

244 CHAPTER 56. FUTURES

56.6 See also

• My article, Simple concurrency with Scala Futures6, provides a little more dis-
cussion about future callback methods.

• I wrote a little demo GUI application named Future Board that works a little like
Flipboard7. You can find an image of the application at this URL8, and you can
find the source code for Future Board in this Github repository9.

• The “Futures and Promises”10 on scala-lang.org is a good resource

These are some of the best books I know about programming with Akka, futures, and
JVM concurrency in general:

• Learning Concurrent Programming in Scala11

• Akka Concurrency12

• Java Concurrency in Practice13

6http://kbhr.co/hs-future1
7https://flipboard.com/
8http://kbhr.co/hs-flipboard
9https://github.com/alvinj/FPFutures
10http://docs.scala-lang.org/overviews/core/futures.html
11http://amzn.to/2fWn70c
12http://amzn.to/2xhUNd4
13http://amzn.to/2fdFfSK

http://kbhr.co/hs-future1
https://flipboard.com/
http://kbhr.co/hs-flipboard
https://github.com/alvinj/FPFutures
http://docs.scala-lang.org/overviews/core/futures.html
http://amzn.to/2fWn70c
http://amzn.to/2xhUNd4
http://amzn.to/2fdFfSK
http://kbhr.co/hs-future1
https://flipboard.com/
http://kbhr.co/hs-flipboard
https://github.com/alvinj/FPFutures
http://docs.scala-lang.org/overviews/core/futures.html
http://amzn.to/2fWn70c
http://amzn.to/2xhUNd4
http://amzn.to/2fdFfSK

57
Summary

I hope you enjoyed this book as a quick, gentle introduction to the Scala programming
language, and I hope I was able to share some of the beauty of the language.

57.1 Best Scala books

To help you learn more about Scala, here are some of the best resources I know. First,
as a special mention, Programming in Scala1 is written by Martin Odersky (the creator
of Scala), Bill Venners (creator of ScalaTest and more), and Lex Spoon, and I consider
it to be the reference for the Scala language.

In alphabetical order, I’ve read these other books, and I can recommend them:

• Akka Concurrency2

• Once you know about functional programming, Functional and Reactive Do-
main Modeling3 is a good resource

• Functional Programming in Scala4 is a good resource for learning about FP
• Java Concurrency in Practice5

• Learning Concurrent Programming in Scala6

• Once you’ve had an introduction to Scala (such as in this book), Scala for the
Impatient7 is a good quick reference guide

1http://kbhr.co/hs-ps
2http://kbhr.co/hs-akka-con
3http://kbhr.co/hs-frdm
4http://kbhr.co/hs-fpis
5http://kbhr.co/hs-concurrency
6http://kbhr.co/hs-cpis
7http://kbhr.co/hs-simp

245

http://kbhr.co/hs-ps
http://kbhr.co/hs-akka-con
http://kbhr.co/hs-frdm
http://kbhr.co/hs-frdm
http://kbhr.co/hs-fpis
http://kbhr.co/hs-concurrency
http://kbhr.co/hs-cpis
http://kbhr.co/hs-simp
http://kbhr.co/hs-simp
http://kbhr.co/hs-ps
http://kbhr.co/hs-akka-con
http://kbhr.co/hs-frdm
http://kbhr.co/hs-fpis
http://kbhr.co/hs-concurrency
http://kbhr.co/hs-cpis
http://kbhr.co/hs-simp

246 CHAPTER 57. SUMMARY

57.2 My other books

My other books on Scala are:

• Scala Cookbook8

• Functional Programming, Simplified9

TheCookbook shares themost common recipes forworkingwith Scala, and the second
book attempts to make learning functional programming as simple as possible.

Other books I’ve written include:

• How I Sold My Business: A Personal Diary10

• A Survival Guide for New Consultants11

57.3 Thank you!

Thank you again for reading this book.

All the best,
Al

8http://kbhr.co/hs-cook
9http://kbhr.co/hs-fps
10http://kbhr.co/hs-hismb
11http://kbhr.co/hs-consult

http://kbhr.co/hs-cook
http://kbhr.co/hs-fps
http://kbhr.co/hs-hismb
http://kbhr.co/hs-consult
http://kbhr.co/hs-cook
http://kbhr.co/hs-fps
http://kbhr.co/hs-hismb
http://kbhr.co/hs-consult

Index

+=, 49
-=, 49

abstract class, 99
syntax, 100

Akka, 219
actor model, 219
benefits, 221
features, 220
video example, 222

akka, 212
anonymous functions, 123
App trait, 23
apply method, 196
ArrayBuffer, 105

examples, 107

BigDecimal, 36
BigInt, 36
build.sbt, 161, 165

case object, 209
enumerations, 210

case objects
as messages, 211

class
abstract, 99
Pizza class, 83
primary constructor, 67

class constructor, 65
class constructors

auxiliary, 71
class files, 20
classes, 9, 65

OOP Pizza classes, 150

collections
methods, 129

companion object, 195
constructor parameters

default values, 73
named parameters, 74

control structures, 6

data types
numeric, 35

decrement method, 49
do/while loop, 49
drop, 134
dropWhile, 134

enumeration, 81
enumerations

pizza, 149
with case objects, 210

EOP, 46
equality, 6
error handling, 213

Option, 213
Try, 214

explicit variables, 5
expression-oriented programming, 46
expressions, 46

filter, 131
filter method, 125
for expression, 51

explained, 51
yield keyword, 52

for expressions, 8
for loop, 47

247

248 INDEX

for loops, 8
for-expression

with Option, 187
foreach, 48, 131

with Option, 189
function vs method, 182
functional programming, 175
functions

anonymous, 123
pure, 177

Future
key points, 243
methods, 242
onComplete, 241

futures, 235
creating, 239
example, 237
for expression, 240
REPL example, 235

head, 132
Hello, world, 4, 19
Higher-Order Function, 181

if/else, 6
implicit variables, 5
import, 42
increment method, 49

javap, 20

List, 109
appending elements, 110
history, 111
method names, 111
prepending elements, 109

Map, 115
adding elements, 115
common methods, 137
for loop, 48

foreach, 49
iterating over, 137
removing elements, 116
traversing, 117
updating elements, 117

map, 130
map method, 13
Martin Odersky, 15
match

as method body, 7
match expression, 55

alternate cases, 57
as method body, 56
case statements using if, 58
with Option, 187

match expressions, 7
method

multiline, 77
return type, 76
syntax, 75

methods, 10

object
case object, 209

OOP, 65
example, 149

Option
as a container, 189
foreach, 189
instead of null, 191

Option/Some/None, 186, 213

println, 41
procedure syntax, 69
pure functions, 177

readLine, 41
reduce, 134
REPL, 4, 25

ScalaFiddle, 26

INDEX 249

val fields, 31
return

why it’s not used, 78

SBT, 159
build.sbt, 161
directory structure, 159
with ScalaTest, 165

scala
properties, 3
two types of variables, 5

Scala Build Tool, see SBT
scalac, 4
ScalaTest, 165, 171

BDD tests, 171, 172
first tests, 167
TDD style tests, 169
with SBT, 165

Set, 119
adding elements, 119
removing elements, 120

side effects, 46
statements, 46
String

interpolation, 37
multiline, 38

Swing, 147

tail, 53, 132
take, 133
takeWhile, 133
trait

doesn’t allow constructor parameters,
99

example, 89
extending a trait, 89
extending multiple traits, 90

traits
introduction, 10

try/catch, 8, 63

try/catch/finally, 63
Try/Success/Failure, 214
tuple, 143

returning from a method, 144
tuples, 14

unapply method, 199

val, 29
in the REPL, 31
makes class fields read-only, 66

var, 29
Vector, 113

append elements, 113
prepend elements, 114

while loop, 49

	Preface
	Prelude: A Taste of Scala
	The Scala Programming Language
	Hello, World
	Hello, World (Version 2)
	The Scala REPL
	Two Types of Variables
	The Type is Optional
	A Few Built-In Types
	Two Notes About Strings
	Command-Line I/O
	Control Structures
	The if/then/else Construct
	for Loops
	for Expressions
	match Expressions
	try/catch/finally Expressions
	Classes
	Auxiliary Class Constructors
	Supplying Default Values for Constructor Parameters
	A First Look at Methods
	Enumerations (and a Complete Pizza Class)
	Traits and Abstract Classes
	Using Traits as Interfaces
	Using Traits Like Abstract Classes
	Abstract Classes
	Collections Classes
	ArrayBuffer Class
	List Class
	Vector Class
	Map Class
	Set Class
	Anonymous Functions
	Common Methods on Sequences
	Common Map Methods
	A Few Miscellaneous Items
	Tuples
	Scala and Swing
	An OOP Example
	A Scala + JavaFX Example
	SBT and ScalaTest
	The Scala Build Tool (SBT)
	Using ScalaTest with SBT
	Writing BDD-style tests with ScalaTest and SBT
	Functional Programming
	Pure Functions
	Passing Functions Around
	No Null Values
	Companion Objects
	Case Classes
	Case Objects
	Functional Error Handling
	Concurrency
	Akka Actors
	Akka Actor Examples
	Futures
	Summary

