
Introduction to Java
and

OOA/OOD
for

Web Applications

Alvin J. Alexander
devdaily.com

Copyright 2009 Alvin Alexander, devdaily.com.
All Rights Reserved.

Contents

1 Day 1: Object-Oriented Software Development 7
1.1 Credits and Other Material 7
1.2 Why OO? . 8

1.2.1 Benefits of object-oriented programming 8
1.2.2 Symptoms of software development problems 9
1.2.3 Root causes of project failure 9
1.2.4 Software development best practices 10

1.3 Introduction to OO concepts 11
1.3.1 Encapsulation . 11
1.3.2 Inheritance . 12
1.3.3 Polymorphism . 12
1.3.4 Abstraction with objects 13
1.3.5 Message passing . 13

1.4 UML summary . 14
1.4.1 Standard diagrams . 14

1.5 Object Oriented Software Development 22
1.5.1 Why have a process? 22

1.6 The Rational Unified Process (RUP) 24
1.6.1 Inception phase . 25
1.6.2 Elaboration . 27
1.6.3 Construction phase . 29
1.6.4 Transition . 30

1.7 A sample process . 31
1.7.1 Domain modeling . 31
1.7.2 Use case modeling . 35
1.7.3 Robustness analysis 40
1.7.4 Interaction modeling 42
1.7.5 Collaboration and State Modeling 45
1.7.6 Addressing Requirements 47

1

Contents

1.7.7 Survey of Design Patterns 49
1.8 Agile Methods . 53
1.9 The Agile Alliance . 53
1.10 Introduction to Extreme Programming 55

1.10.1 Risk: The Basic Problem 55
1.10.2 Four Variables . 55
1.10.3 The Cost of Change 56
1.10.4 Four Values . 56
1.10.5 Basic Principles . 56
1.10.6 Back to Basics . 56
1.10.7 The Solution . 57

1.11 OO Summary . 58
1.11.1 OO Concepts . 58
1.11.2 UML . 58

2 Day 2: The Java Programming Language 61
2.1 Introduction . 61

2.1.1 Chapter objectives . 61
2.1.2 Java design goals . 62
2.1.3 What is Java? . 62
2.1.4 How/where to get Java 62

2.2 First Steps with Java . 64
2.2.1 Java Commands and Utilities 64
2.2.2 A first application . 64
2.2.3 main . 65

2.3 Variables, constants, and keywords 66
2.3.1 Primitive data types 66
2.3.2 Literals . 66
2.3.3 Constants . 67
2.3.4 Reserved keywords . 68

2.4 Arrays . 69
2.5 Strings . 70

2.5.1 String objects . 70
2.5.2 StringBuffer class 70

2.6 Comments and Javadoc . 72
2.6.1 Types of comments . 72
2.6.2 Javadoc comment tags 72
2.6.3 A comment example 74
2.6.4 Notes on Usage . 74

2.7 Flow control and loops . 76

devdaily.com 2

Contents

2.7.1 Introduction . 76
2.7.2 Objectives . 76
2.7.3 Statements and blocks 76
2.7.4 if-else . 77
2.7.5 switch . 77
2.7.6 while and do-while . 78
2.7.7 for . 79
2.7.8 Labels . 79
2.7.9 break . 79
2.7.10 continue . 79
2.7.11 return . 80
2.7.12 No goto Statement . 80

2.8 Classes and objects . 81
2.8.1 Introduction . 81
2.8.2 Objectives . 81
2.8.3 A Simple Class . 81
2.8.4 Fields . 82
2.8.5 Access Control and Inheritance 82
2.8.6 Creating Objects . 83
2.8.7 Constructors . 83
2.8.8 Methods . 84
2.8.9 this . 85
2.8.10 Overloading methods 86
2.8.11 Overriding methods 86
2.8.12 Static members . 87
2.8.13 Initialization Blocks 87
2.8.14 Garbage collection and finalize 88
2.8.15 The toString() Method 89
2.8.16 Native Methods . 89

2.9 Methods and parameters . 91
2.9.1 Methods . 91

2.10 Extending Classes . 93
2.10.1 Introduction . 93
2.10.2 Objectives . 93
2.10.3 An extended class . 94
2.10.4 A simple example . 95
2.10.5 What protected really means 96
2.10.6 Constructors in extended classes 96
2.10.7 Overriding methods, hiding fields, and nested classes . 97
2.10.8 Marking methods and classes final 98

devdaily.com 3

Contents

2.10.9 The object class . 98
2.10.10Anonymous classes . 99
2.10.11Abstract Classes and methods 99
2.10.12Cloning objects . 99
2.10.13Extending classes: how and when 101
2.10.14Designing a class to be extended 101

2.11 Interfaces . 102
2.11.1 Introduction . 102
2.11.2 Objectives . 102
2.11.3 An example interface 102
2.11.4 Single inheritance versus multiple inheritance 103
2.11.5 Extending Interfaces 103
2.11.6 Implementing Interfaces 103
2.11.7 Using an Implementation 104
2.11.8 Marker Interfaces . 104
2.11.9 When to Use Interfaces 104

2.12 Exceptions . 105
2.12.1 Introduction . 105
2.12.2 Objectives . 105
2.12.3 Creating exception types 105
2.12.4 throw . 106
2.12.5 The throws clause . 106
2.12.6 try, catch, and finally 106
2.12.7 When to use exceptions 107

2.13 Packages . 108
2.13.1 Introduction . 108
2.13.2 Package Naming . 108
2.13.3 Package Access . 108
2.13.4 Package Contents . 108
2.13.5 Examples . 109

3 Day 3: Standard Libraries & Server-side Programming 110
3.1 Objectives . 110
3.2 IO: Streams and readers . 111
3.3 Java networking . 113

3.3.1 Introduction . 113
3.3.2 Socket . 113
3.3.3 ServerSocket . 113
3.3.4 ServerSocket lifecycle 113
3.3.5 URL . 114

devdaily.com 4

Contents

3.3.6 URLConnection . 114
3.4 Threads . 115

3.4.1 Objectives . 115
3.4.2 Applications without multiple threads 115
3.4.3 Thread states . 115
3.4.4 Creating a threaded class with thread 116
3.4.5 Creating a threaded class with the runnable interface 116
3.4.6 Thread methods . 116
3.4.7 Thread references . 117

3.5 JavaBeans . 118
3.6 Remote Method Invocation (RMI) 119
3.7 Java Native Interface (JNI) 119
3.8 Collections framework . 120

3.8.1 Lists . 121
3.8.2 Maps . 122
3.8.3 Collection Utilities . 122

3.9 Internationalization, localization, and formatting 124
3.10 HTTP protocol . 125

3.10.1 Request and Response 125
3.10.2 Cookies . 126

3.11 Servlets and JSPs . 127
3.11.1 Objectives . 127
3.11.2 Introduction/Background 127

3.12 Servlets . 128
3.12.1 Objectives . 128
3.12.2 Servlet basics . 128
3.12.3 HelloWorldServlet . 128
3.12.4 Servlet lifecycle . 129
3.12.5 HTTPServlet . 129
3.12.6 HTTPServletRequest 129
3.12.7 HTTPServletResponse 129

3.13 JavaServer Pages . 130
3.13.1 What is a JSP? . 130
3.13.2 JSP engine/container: 130
3.13.3 Translation time and request time 130
3.13.4 Scriptlets . 131
3.13.5 Expressions . 131
3.13.6 Declarations . 131
3.13.7 Directives . 131
3.13.8 Implicit objects . 132

devdaily.com 5

Contents

3.13.9 Exception handling . 133
3.14 Survey of other server-side Java technologies 134

3.14.1 XML . 134
3.14.2 XSLT . 135
3.14.3 Enterprise Java Beans 137
3.14.4 Java Messaging Service 137

4 Day 4: Databases, Best Practices, and Final Project 138
4.1 Databases and JDBC . 138

4.1.1 Getting things set up 138
4.1.2 Connecting to the database 138
4.1.3 Statements . 139
4.1.4 getXXX methods . 140
4.1.5 Updating the database 140
4.1.6 PreparedStatements 141
4.1.7 A real method . 142

4.2 JUnit . 143
4.2.1 Is Testing Important? 143
4.2.2 Mars Orbiter . 143
4.2.3 USS Yorktown . 143
4.2.4 Types of tests . 143
4.2.5 Unit Testing 101 . 144
4.2.6 Goals of unit testing? 144
4.2.7 Unit Testing with JUnit 145
4.2.8 A sample JUnit session 145
4.2.9 Recap . 147

4.3 Best practices . 148
4.4 Refactoring . 149
4.5 Final project . 150

devdaily.com 6

Chapter 1

Day 1: Object-Oriented
Software Development

1.1 Credits and Other Material

This training material about the Java Programming Language and Object-
Oriented Programming methods is always used with at least two other
books, to whom we owe a great deal of credit. These books are:

1. The Java Programming Language, by Arnold and Gosling

2. Use Case Driven Object Modeling With Uml: A Practical Approach,
by Rosenberg and Scott

Many other books and reference materials have been used in the creation of
this material, and they are all listed in the bibliography at the end of this
material.

7

1.2. Why OO?

1.2 Why OO?

1.2.1 Benefits of object-oriented programming

Why has object-oriented programming gone from being “something to think
about” to being a de-facto standard in the way software is developed today?
OOA/OOD/OOP is good for:

• Analyzing user requirements

• Designing software

• Constructing software

– Reusability (reusable components)

– Reliability

– Robustness

– Extensibility

– Maintainability

• Reducing large problems to smaller, more manageable problems

devdaily.com 8

1.2. Why OO?

According to the GartnerInstitute ...

• 74% of all IT projects fail, come in over budget, or run past the original
deadline.

• 28% fail altogether.

• 52.7% of IT projects cost 189

• Every year $75B is spent on failed IT projects.

1.2.2 Symptoms of software development problems

The text “Rational Unified Process, An Introduction” [9] identifies the fol-
lowing symptoms that characterize failing software development projects.

• Inaccurate understanding of end-user needs.

• Inability to deal with changing requirements.

• Modules that don’t fit together.

• Software that’s hard to maintain or extend.

• Late discovery of serious projects flaws.

• Poor software quality.

• Unacceptable software performance.

• Team members in each other’s way.

• An untrustworthy build and release process.

1.2.3 Root causes of project failure

The same text identifies the root causes of these failures:

• Ad hoc requirements management.

• Ambiguous and imprecise communication.

• Brittle architectures.

• Overwhelming complexity.

devdaily.com 9

1.2. Why OO?

• Undetected inconsistencies in requirements, designs, and implementa-
tions.

• Insufficient testing.

• Subjective project status assessment.

• Failure to attack risk.

• Uncontrolled change propagation.

• Insufficient automation.

1.2.4 Software development best practices

Finally, the same text identifies these best practices:

• Develop software iteratively.

• Manage requirements.

• Use component-based architectures.

• Visually model software.

• Verify software quality.

• Control changes to software.

devdaily.com 10

1.3. Introduction to OO concepts

1.3 Introduction to OO concepts

What does it mean to be “object-oriented”? The “big three” concepts are
encapsulation, polymorphism, and inheritance, but the text “Fundamentals
of Object-Oriented Design in UML” [12] specifies that the following criteria
are necessary for a language to be considered object oriented.

1. Encapsulation – the grouping of related ideas into unit. Encapsulating
attributes and behaviors.

2. Inheritance – a class can inherit its behavior from a superclass (parent
class) that it extends.

3. Polymorphism – literally means “many forms”.

4. Information/implementation hiding – the use of encapsulation to keep
implementation details from being externally visible.

5. State retention – the set of values an object holds.

6. Oject identity – an object can be identified and treated as a distinct
entity.

7. Message passing – the ability to send messages from one object to
another.

8. Classes – the templates/blueprints from which objects are created.

9. Genericity – the construction of a class so that one or more of the
classes it uses internally is supplied only at run time.

10. Test here

11. More testing here

1.3.1 Encapsulation

The grouping of related items into one unit.

• One of the basic concepts of OO.

• Attributes and behaviors are encapsulated to create objects.

• OO modeling is close to how we perceive the world.

devdaily.com 11

1.3. Introduction to OO concepts

• Implementation details are hidden from the outside world. We all
know how to use a phone, few of us care how it works.

• The packaging of operations and attributes representing state into an
object type so that state is accessible or modifiable only through the
objects’ interface

• Encapsulation lets builders of objects reuse already-existing objects,
and if those objects have already been well-tested, much larger and
more complex systems can be created.

1.3.2 Inheritance

• A subclass is derived from a superclass. An Employee is a Person.

• The subclass inherits the attributes and behavior of the superclass.

• The subclass can override the behavior of the superclass.

• Notice the use of the “Is-A” phrase to describe inheritance.

• Inheritance promotes re-use.

1.3.3 Polymorphism

• Literally means “many forms”.

• A method can have many different forms of behavior.

• Commonly used between a set of classes that have a common super-
class.

• The sender of a message does not have to know the type/class of the
receiver.

• A single operation or attribute may be defined upon more than one
class and may take on different implementations in each of those
classes.

• An attribute may point to different objects at different times.

devdaily.com 12

1.3. Introduction to OO concepts

1.3.4 Abstraction with objects

• Abstraction: the act of identifying software artifacts to model the
problem domain.

• Classes are abstracted from concepts.

• This is the first step in identifying the classes that will be used in your
applications.

• Better to have too many classes than too few. (?)

• When in doubt, make it a class. (?)

1.3.5 Message passing

• Objects communicate by sending messages.

• Messages convey some form of information.

• An object requests another object to carry out an activity by sending
it a message.

• Most messages pass arguments back and forth.

• Meilir Page-Jones defines three types of messages[12]:

1. Informative – send information for the object to update itself.

2. Interrogative – ask an object to reveal some information about
itself

3. Imperative – take some action on itself, or another object

• Grady Booch defines four types of messages[4]:

1. Synchronous – receiving object starts only when it receives a
message from a sender, and it is ready.

2. Balking – sending object gives up on the message if the receiving
object is not ready to accept it.

3. Timeout – sending object waits only for a certain time period for
the receiving object to be ready to accept the message.

4. Asynchronous – sender can send a message to a receiver regardless
of whether the receiver is ready to receive it.

devdaily.com 13

1.4. UML summary

1.4 UML summary

• Unified Modeling Language – UML.

• A modeling language, not a method.

• Provides a graphical representation that allows developers and archi-
tects to model a software system before the system is ever built.

• Analogy – an architect creating a blueprint before a house or office
building is ever built.

• The UML does not specify a methodology/process. Therefore, saying
“We use the UML methodology is incorrect.”

A few URLs for reference:

• http://www.omg.org

• http://www.rational.com/uml/index.jsp

• UML Distilled – http://www.awl.com/cseng/titles/0-201-32563-2

1.4.1 Standard diagrams

The UML defines nine standard diagrams:

• Use Case

• Class

• Interaction

1. Sequence
2. Collaboration

• Package

• State

• Activity

• Component

• Deployment

Note that the UML can be used to model other processes besides software
development.

devdaily.com 14

1.4. UML summary

Figure 1.1: A sample UML Use Case Diagram.

Use Case diagram

A typical interaction between a user and a computer system.

Class diagram

• Describes the types of objects in the system, and the static relation-
ships between them.

• Two main kinds of static relationships:

– Associations – Has-A

– Subtypes – Is-A

devdaily.com 15

1.4. UML summary

Figure 1.2: A high level class diagram showing the relationships between
classes.

devdaily.com 16

1.4. UML summary

Figure 1.3: A class diagram showing the detailed attributes and behaviors
of a class.

devdaily.com 17

1.4. UML summary

Figure 1.4: A class diagram showing relationships to classes in other pack-
ages

Sequence diagram

• Sequence diagrams follow the flow of entire use cases (emphasis on
time ordering).

• One sequence diagram for the basic course and alternative courses for
each of your use cases.

Collaboration diagram

• Shows how critical objects collaborate within a use case.

• Similar to sequence diagrams.

devdaily.com 18

1.4. UML summary

Figure 1.5: A sequence diagram follows the flow of an entire use case.

devdaily.com 19

1.4. UML summary

Figure 1.6: A collaboration diagram shows how important objects collabo-
rate within a use case.

– Focus on key transactions.
– Sequence diagrams follow the flow of entire use cases (emphasis

on time ordering).
– Collaboration diagrams add extra detail related to timing of mes-

sages.

Package diagram

• Classes are arranged into logically-ordered packages.

• Package diagrams show relationships and dependencies between pack-
ages.

• Package diagrams are vital for large projects.

State diagram

• Captures the lifecycle of one or more objects.

Activity diagram

• Advanced flowcharts.

• Swimlanes let you organize a set of activities according to who is per-
forming them.

devdaily.com 20

1.4. UML summary

Figure 1.7: A state diagram captures the lifecycle of one or more objects.

Component diagram

• The implementation view of a system.

• Displays the organization and dependencies between software compo-
nents.

Deployment diagram

• The environment view of a system.

• Shows the physical relationships among software and hardware com-
ponents.

• Each node represents some computational unit – usually a piece of
hardware.

• Connections show communication paths.

• In practice probably not used very much, though most projects have
a drawing that looks something like these.

devdaily.com 21

1.5. Object Oriented Software Development

1.5 Object Oriented Software Development

• Larger processes/methodologies:

– Rational Unified Process (RUP)

– Object-Oriented Software Process (OOSP)

– OPEN Process

• Lightweight/agile processes:

– XP (Extreme Programming)

– Cockburn’s Crystal Family

– Open Source

– Highsmith’s Adaptive Software Development

– Scrum

– Coad’s Feature Driven Development

– DSDM (Dynamic System Development Method)

Larger/heavier processes are typically built around the Unified Modeling
Language, or UML.

1.5.1 Why have a process?

• Create a product that users want.

• Make the process manageable and predictable.

• Capability Maturity Model (CMM) from the Carnegie-Mellon Univer-
sity Software Engineering Institute defines five levels of ”maturity”.

• Traditional development process: Waterfall (Analysis, Design, Code,
Test).

• Spiral process (Risk Analysis/Systems Analysis/User Feedback, De-
sign, Code, Test/User Feedback).

• Objectory - defines the four project phases of Inception, Elaboration,
Construction, Transition.

– Completion of each Objectory phase marks a major milestione.

– Objectory uses iteration to make complex projects possible.

devdaily.com 22

1.5. Object Oriented Software Development

Figure 1.8: Steps of the Capability Maturity Model.

• The process defines ways to make iterative projects manageable.

• Model the system before developing it (in the same way an architect
models a new facility before building it).

devdaily.com 23

1.6. The Rational Unified Process (RUP)

1.6 The Rational Unified Process (RUP)

The Rational Unified Process formally consists of the following steps:

• Inception – a discover phase, where an initial problem statement and
functional requirements are created.

• Elaboration – the product vision and architecture are defined, con-
struction cycles are planned.

• Construction – the software is taken from an architectural baseline to
the point where it is ready to make the transition to the user commu-
nity.

• Transition – The software is turned into the hands of the user’s com-
munity.

devdaily.com 24

1.6. The Rational Unified Process (RUP)

Figure 1.9: A high-level view of the Rational Unified Process. (Image cour-
tesy of Rational Software.)

1.6.1 Inception phase

The “The Rational Unified Process, An Introduction”[9] specifies the fol-
lowing objectives, activities, and artifacts from an inception phase.

Objectives

• Establish project’s scope and boundary conditions.

• Determine the critical uses of the system.

• Exhibiting at least one candidate architecture against some of the
primary scenarios.

• Estimating the overall cost and schedule for the entire project.

• Estimating potential risks.

devdaily.com 25

1.6. The Rational Unified Process (RUP)

Activities

• Formulate the scope of the project.

• Plan and prepare the business case, including alternatives for risk man-
agement, staffing, project plan, and trade-offs between cost, schedule,
and profitability.

• Develop a candidate architecture.

Artifacts

• A vision document.

• A use-case model survey.

• An initial project glossary.

• An initial business case.

• An initial risk assessment.

• A project plan.

• Other possible items:

– An initial use-case model.

– An initial domain model.

– One or more prototypes.

devdaily.com 26

1.6. The Rational Unified Process (RUP)

1.6.2 Elaboration

The “The Rational Unified Process, An Introduction”[9], specifies the follow-
ing purpose, objectives, activities, and outcome from an elaboration phase.

Purpose

• Analyze the problem domain.

• Establish a sound architecturla foundation.

• Develop the project plan.

• Eliminate the highest-risk elements.

Objectives

• Define, validate, and baseline the architecture.

• Baseline the vision.

• Baseline a plan for the construction phase.

• Demonstrate that the baseline architecture will support the vision for
a reasonable cost in a reasonable time, or not.

Activities

• The vision is elaborated.

• The process, infrastructure, and development environment are elabo-
rated.

• Processes, tools, and automation support are put into place.

• The architecture is elaborated and the components are selected.

Outcome/Deliverables

• An 80% complete use-case model has been developed.

• Supplementary requirements are documented.

• A software architecture description is created.

• An executable architectural prototype is created.

devdaily.com 27

1.6. The Rational Unified Process (RUP)

• A revised risk list and business case are created.

• A development plan for the overall project is created.

• An updated development case is created, specifying the process to be
used.

Other artifacts

• Construction plan.

• Software prototypes.

• Risk identification and management plan.

• A test plan.

• A data dictionary.

• A preliminary user manual.

devdaily.com 28

1.6. The Rational Unified Process (RUP)

1.6.3 Construction phase

The “The Rational Unified Process, An Introduction”[9], specifies the fol-
lowing objectives, activities, and deliverables from a construction phase.

Objectives

• Minimize development costs by optimizing resources and avoiding un-
necessary scrap and rework.

• Achieving adequate quality as rapidly as practical.

• Achieving useful versions as rapidly as practical.

Activities

• Resource management, resource control, process optimization.

• Complete component development and testing.

• Assessment of product releases against acceptance criteria.

Deliverables

• The software product integrated on the adequate platforms.

• User manuals.

• A description of the current release.

devdaily.com 29

1.6. The Rational Unified Process (RUP)

1.6.4 Transition

The text “The Rational Unified Process, An Introduction”[9], specifies the
following purpose, objectives and activities from a transition phase.

Purpose

• Transition the software to the user community.

– Beta testing.

– Parallel operation with any existing legacy system.

– Conversions of operational databases.

– Training of users.

– Product rollout.

Objectives

• Achieving user self-supportability.

• Achieving stakeholder buy-in that the deployed product is complete
and consistent with the evaluation criteria of the vision.

• Achieving final product baseline as rapidly and cost-effectively as pos-
sible.

Activities

• Deployment-specific engineering:

– Cutover

– Commercial packaging and production

– Sales rollout

– Field personnel training

• Tuning activities, bug-fixing, and enhancement for performance and
usability.

• Assessing the deployment baseline against the vision and acceptance
criteria.

devdaily.com 30

1.7. A sample process

1.7 A sample process

The next several sections provide an outline of a sample object-oriented
software development process. Specifically, this process is based on the text
“Use Case Driven Object Modeling with UML, A Practical Approach” by
Rosenberg and Scott[4]. This is a real process, based on the theory outlined
in the Rational Unified Process.

1.7.1 Domain modeling

First guess at domain objects.

What is a class?

• A class is a template for creating objects.

• A class defines the attributes and behaviors an object will have.

• An object is a specific instance of a class.

• If an object has no attributes, is it really a valid object?

Attributes

• A data variable with object scope.

• Examples: book attributes: title, author, publisher, ISBN

• The value of an object’s attributes define its state.

• Attributes should not be accessible to entities outside the object.

• If an object has no attributes, is it really a valid object?

Behaviors

• Method: a function with object scope.

• Methods can operate on that object’s attributes.

• Defines the objects behaviors – how it does what it does.

• Methods define the objects responsibilities.

• If an object has no methods, is it really a valid object?

devdaily.com 31

1.7. A sample process

Discover classes

• Work outward from data requirements to build a static model.

• Jump start with grammatical inspection: Make a quick pass through
the available material, making lists of the nouns, verbs, and possessive
phrases.

• Nouns become classes.

• Noun phrases becomes class attributes.

• Verbs become operations (behaviors) and associations.

• Possessive phrases may indicate that nouns should be attributes rather
than objects.

• Create this list of ”class candidates”.

• Best sources of classes: high-level problem statement, lower-level re-
quirements, expert knowledge of the problem space.

• Go through the candidate classes and eliminate the items that are un-
necessary (redundant or irrelevant) or incorrect (too vague, represent
concepts outside the model).

Where else do classes come from?

• Tangible things – cars, telemetry data, pressure sensors

• Roles – mother, teacher, politician, manager

• Events – interrupt, request

• Interactions – loan, meeting, intersection

• People – humans who carry out some function

• Places – areas set aside for people or things

• Things – physical objects, devices

• Organizations – formally organized collections of people

• Concepts – principles or ideas that are not tangible

devdaily.com 32

1.7. A sample process

Build generalization relationships

• Generalization – one class is a refinement of another class.

• Define Is-a relationships.

• Break into (1) superclass/parent, and (2) subclass/child.

• Child inherits attributes and behaviors of the parent.

• Sometimes discover classes ”ahead of schedule”.

Build associations between classes

• Association : A static relationship between two classes.

• Show dependencies between classes but not between actions.

• Should be a true statement about the problem space, independent of
time (i.e., static).

• Build the list of candidate associations from the list of verbs and verb
phrases and knowledge of the problem domain.

Examples:

• Order generates Trade.

• Portfolio places Orders.

• Posting involves GLAccount.

• Trade generates TradeLot.

• Some associations are one-to-one, some are one-to-many. These are
referred to as multiplicities.

• Don’t worry about being more specific about numbers of one-to-many
associations at this time.

• Aggregation : an association in which one class is made up of other
classes. ”Has-a” or ”part-of” relationships.

devdaily.com 33

1.7. A sample process

Mine legacy documentation for domain classes

• Relational database tables are an excellent source of domain classes.

• Helper classes: contain attributes and operations that are relevant
to more significant classes.

Wrapping up domain modeling

Continue to iterate and refine

• Draw an analysis-level class diagram

• The user’s wants and needs are the reason your project team exists.

• Establish a time budget for building your initial domain model.

• The diagram you draw during domain modeling is just a skeleton of
your object model.

Three key principles

• Work inward from user requirements.

• Work outward from data requirements.

• Drill down from high-level models to detailed design.

devdaily.com 34

1.7. A sample process

1.7.2 Use case modeling

Actors

• An actor is anyone or anything that must interact with the system.

• An actor is not part of the system.

• Actors are typically found in the problem statement, and by conver-
sations with customers and domain experts.

• Actors are drawn as a stick figures.

• When dealing with actors it is important to think about roles.

Questions to help identify actors

• Who is interested in a certain requirement?

• Who installs the system?

• Who starts and stops the system?

• Where in the organization is the system used?

• Who will benefit from use of the system?

• Who will supply the system with this information, use this informa-
tion, and remove this information?

• Who will support and maintain the system?

• Does the system use an external resource?

• Does one person play several different roles?

• Do several people play the same role?

• Does the system interact with a legacy system?

• What other systems use this system?

• Who gets information from this system?

devdaily.com 35

1.7. A sample process

Use Cases Use Case – a sequence of actions that an actor performs within
a system to achieve a particular goal. The purpose of this stage is to capture
user requirements of the new system using use case diagrams.

• Definition: A sequence of actions that an actor performs within a
system to achieve a particular goal.

• A use case describes one or more courses through a user operation. The
basic course must always be present; alternate courses are optional.

• Basic course – the main start-to-finish path the user will follow under
normal circumstances.

• Alternate course – infrequently used path, an exception, or an error
condition.

• Stated from the perspective of the user as a present-tense verb phrase
in an active voice (AdmitPatient, Do Trade Entry, Generate Reports).

• Describes one aspect of usage of the system without presuming any
specific design or implementation.

• Ask ”what happens?”

• ”Then what happens?”

• Be relentless.

• All required system functionality should be described in the use cases.

• Actor - represents a role a user can play with regard to a system.

• A user can serve as more than one type of actor.

• Use cases appear as ovals, generally in the middle of a use case diagram.

• Analysis level and design level use cases.

• Should be able to write a solid paragraph or two about a design-level
use case.

• Use cases should have strong correlations with material in the user
manual for the system (write the manual, then write the code). (Write
the manual as though the system already exists.)

• Use rapid prototyping as frequently as possible.

devdaily.com 36

1.7. A sample process

• If you’re reengineering an existing legacy system, work from the user
manual backward.

• A use case captures some user-visible function.

• A use case achieves a discrete goal for the user.

• A use case may be large or small.

• Use cases model a dialogue between an actor and the system.

Questions to help identify use cases[11]

• What are the tasks of each actor?

• Will any actor create, store, change, remove, or read information in
the system?

• What use case will create, store, change, remove, or read this infor-
mation?

• Will any actor need to inform the system about sudden, external
changes?

• Does any actor need to be informed about certain occurrences in the
system?

• What use cases will support and maintain the system?

• Can all functional requirements be performed by the use cases?

Use case diagrams

• Use case diagrams identify use cases and actors of the system.

• Use case-actor relationships are shown with association lines.

• Use cases appear as ovals, generally in the middle of a diagram.

• Use cases appear at various levels of detail; two such levels are analysis-
level and design-level.

devdaily.com 37

1.7. A sample process

Figure 1.10: A sample use case diagram.

devdaily.com 38

1.7. A sample process

Use case diagrams – include and extend

• One use case can use or extend another use case.

• The secondary (sub-level) use case is not associated directly with an
actor.

• Stereotypes

• <<includes>> – use/include a piece of behavior that is similar across
more than one use case.

• <<extends>> – one use case is similar to another, but does more.

Wrapping Up Use Case Modeling Feel comfortable when you’ve achieved
the following goals:

1. Your use cases account for all of the desired functionality of the system.

2. You have clear and concise descriptions of the basic course of action,
with appropriate alternate courses of action.

3. You have factored out common scenarios.

Milestone 1: Requirements Review

devdaily.com 39

1.7. A sample process

1.7.3 Robustness analysis

Robustness analysis involves:

1. analyzing the text of each of your use cases,

2. identify a first-guess set of objects that will participate in the use case,
then

3. classify these objects into

(a) Boundary objects
(b) Entity objects
(c) Control objects

4. This has parallels in the Model/View/Controller paradigm.

Definitions

• Boundary objects - Actors use these to communicate with the sys-
tem (”View”).

• Entity objects - Usually objects from the problem domain (”Model”).

• Control objects - Serve as the ”glue” between Boundary and Entity
objects (”Controller”).

Key roles of robustness analysis

• Sanity check - make sure your use case text is correct.

• Completeness check - make sure your use cases address all the neces-
sary alternate courses of action.

• Ongoing discovery of objects - you may have missed some objects
during domain modeling.

Closer look at object types

Boundary objects

• ”View”.

• Objects that the Actors will be interacting with.

• Windows, screens, dialogs, menus.

• Get many from prototypes.

devdaily.com 40

1.7. A sample process

Entity objects

• ”Model”.

• Often map to database tables and files.

• Many come from the domain model.

• Simpler and more generic – easier to reuse in other projects.

Control objects

• ”Controller”.

• Embody much of the application logic.

• Where you capture business rules and application logic.

• Not necessarily meant to endure as stand-alone classes as you proceed.

• Sometimes serve as placeholders to make sure you don’t forget any
functionality and system behavior required by your uses cases.

Performing robustness analysis

• Actors can talk only to Boundary objects.

• Boundary objects can talk only to Controllers and Actors.

• Entity objects can only talk to Controllers.

• Controllers can talk to both Boundary objects and Controllers, but
not to Actors.

• Update your static model.

Milestone 2: Preliminary Design Review

devdaily.com 41

1.7. A sample process

1.7.4 Interaction modeling

Introduction

Current state:

• Uncovered most problem space objects and assigned some attributes
to them.

• Defined some static relationships between these objects.

• Defined a few dynamic relationships on robustness diagrams.

Interaction modeling is the phase in which you build the threads that weave
your objects together and enable you to see how they will perform useful
behavior. One of the primary tools of this task is creating sequence dia-
grams.
Objectives
Upon completion of this section, students will be able to:

• Define the goals of interaction modeling.

• Create sequence diagrams.

• Put behavioral methods on your classes.

• Update your static model.

Goals of Interaction Modeling

• Allocate behavior among entity, boundary, and control objects.

• Show detailed interactions that occur over time among objects.

• Finalize the distribution of operations among classes.

Sequence Diagrams

• Represent the major work product of our design.

• Draw one sequence diagram that encompasses the basic course and
all alternative courses within each of your use cases. One sequence
diagram per use case.

• These results form the core of your dynamic model.

devdaily.com 42

1.7. A sample process

Four Sequence Diagram Elements

• The text for the course of action of the use case.

• Objects.

• Messages.

• Methods (operations, behaviors).

Getting Started

Four steps to creating diagrams:

• Copy the use case text to the left margin of the sequence diagram.

• Add the entity objects.

• Add the boundary objects.

• Work through the controllers, one at a time. Determine how to allocate
behavior between the collaborating objects.

Putting Methods on Classes

• This is the essence of interaction modeling.

• It’s also hard.

• A cow needs milking. Does the cow object milk itself, or does the Milk
object ”de-cow” itself?

• Convert controllers from robustness diagrams to sets of methods and
messages that embody the desired behavior.

• An object should have a single ”personality”. Avoid schizophrenic
objects.

• If you have objects with split personalities you should use aggregation.

• Use CRC cards to help.

• Behavior allocation is of critical importance.

• Don’t show message parameters on your sequence diagrams.

devdaily.com 43

1.7. A sample process

Which Methods Belong With Objects

• Reusability - the more general, the more reusable. Does this method
make the class more or less reusable.

• Applicability - is there a good fit between the object and method?

• Complexity - is it easier to build a method in another object?

• Implementation knowledge - does the implementation of the behavior
depend on details internal to the associated method?

Completing Interaction Modeling

• Drawn all needed sequence diagrams.

• Updated your static model.

• Last stop before you start coding; Critical Design Review is essential.

devdaily.com 44

1.7. A sample process

1.7.5 Collaboration and State Modeling

Introduction

• Model additional aspects of your system.

• Most useful in real-time system design.

• Collaboration diagrams are similar to sequence diagrams.

Collaboration diagrams

• Shows how critical objects collaborate within a use case.

• Collaboration diagrams are similar to sequence diagrams.

– Collaboration diagrams focus on key transactions.

– Sequence diagrams follow the flow of entire use cases (emphasis
on time ordering).

– Collaboration diagrams add extra detail related to timing of mes-
sages.

State diagrams

• Captures the lifecycle of one or more objects.

• Expressed in terms of:

– Different states objects can assume

– Events that cause changes in state

Basic elements:

• Initial state – hollow circle containing a black dot.

• Each additional state – rectangle with rounded corners.

• Three standard events:

– Entry

– Exit

– Do

• Transition – an arrow between two states.

devdaily.com 45

1.7. A sample process

How many state diagrams are needed?

• Every object has a state machine.

– Object is created.

– Sends messages.

– Receives messages.

– It is destroyed.

• In reality, most state machines are boring, so don’t waste time drawing
them.

– Don’t diagram an object with two states, On and Off.

• Readability is important.

Activity diagrams

• Remarkably similar to flowcharts.

• Swimlanes – group a set of activities according to who is performing
them.

• A good way to understand/model business processes.

devdaily.com 46

1.7. A sample process

1.7.6 Addressing Requirements

Introduction

This section shows how to trace the results of your analysis and design work
back to your user requirements.

Objectives

Upon completion of this section, students will be able to:

• Define a requirement

• Describe the nature of requirements, use cases, and functions

What is a Requirement?

• A user-specified criterion that the system must satisfy.

• Requirements define the bahvior and functionality of a proposed sys-
tem.

• Usually expressed as sentences that include the word shall or must.

Types of Requirements

• Functional - “The system shall automatically generate postings to the
general ledger”.

• Data - “The system ... international currencies ...”.

• Performance - “The system must ... in XX seconds”.

• Capacity - “Up to 10,000 transactions per day”.

• Test - “Stress testing shall ... XX users ... YY computers ...”.

Use Cases and Requirements

• A use case describes a unit of behavior.

• A requirement describes a law that governs behavior.

• Several types of requirements: functional, performance, and constraints.

• A use case can satisfy one or more functional requirements.

devdaily.com 47

1.7. A sample process

• A functional requirement may be satisfied by one or more use cases.

• Requirements are requirements, use cases are use cases. Requirements
are not use cases.

Requirements Traceability

• Make a list of the system requirements.

• Write the user manual for the system in the form of use cases.

• Iterate with your customers until you have closure of items 1 and 2.

• Make sure you can trace every piece of your design to at least one user
requirement.

• Make sure you can trace every requirement to the point at which its
satisfied within your design.

• Trace your design back to your requirements as you review the design
during your critical design review.

devdaily.com 48

1.7. A sample process

1.7.7 Survey of Design Patterns

• Repeating patterns - “Her garden is like mine, except that in mine I
use astilbe.”

• Recurring solutions to design problems you see over and over.

• A set of rules describing how to accomplish certain tasks in the realm
of software development.

• Made famous by the text “Design Patterns”, by Gamma, Helm, et al.

• A list of some of the most well-known design patterns:

Factory Abstract Factory
Singleton Builder
Prototype Adapter
Bridge Composite
Decorator Facade
Flyweight Proxy
Chain of Responsibility Command
Interpreter Iterator
Mediator Memento
Observer State
Strategy Template
Visitor

devdaily.com 49

1.7. A sample process

Factory pattern example

• The code and diagram that follow demonstrate a small, simple example
of the Factory pattern

public abstract class Dog {
public abstract void speak ();

}

public class Poodle extends Dog {
public void speak() {
System.out.println("The poodle says \"arf\"");

}
}

public class SiberianHusky extends Dog {
public void speak() {
System.out.println("The husky says \"Whazzup?!!\"");

}
}

public class Rottweiler extends Dog {
public void speak() {
System.out.println("The Rottweiler says (in a very deep voice) \"WOOF!\"");

}
}

devdaily.com 50

1.7. A sample process

public class Main {
public Main() {
// create a small dog
Dog dog = DogFactory.getDog("small");
dog.speak();

// create a big dog
dog = DogFactory.getDog("big");
dog.speak();

// create a working dog
dog = DogFactory.getDog("working");
dog.speak();

}

public static void main(String[] args) {
new Main();

}
}

public class DogFactory {

public static Dog getDog(String criteria) {
if (criteria.equals("small"))
return new Poodle();

else if (criteria.equals("big"))
return new Rottweiler();

else if (criteria.equals("working"))
return new SiberianHusky();

return null;
}

}

devdaily.com 51

1.7. A sample process

Figure 1.11: A UML use case diagram for the DogFactory.

devdaily.com 52

1.8. Agile Methods

1.8 Agile Methods

Many developers believe that formal “heavyweight” processes like RUP still
have significant shortcomings. According the original Extreme Program-
ming text (the “white book”), at a minimum the following roblems still
exist:

• Schedule slips

• Project canceled

• System goes sour

• Defect rate

• Business misunderstood

• Business changes

• False feature rich

• Staff turnover

1.9 The Agile Alliance

A set of principles from the “Agile Alliance” (http://www.agilealliance.org/):

• Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software.

• Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

• Business people and developers must work together daily throughout
the project.

• Build projects around motivated individuals. Give them the environ-
ment and support they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

devdaily.com 53

1.9. The Agile Alliance

• Working software is the primary measure of progress.

• Agile processes promote sustainable development. The sponsors, de-
velopers, and users should be able to maintain a constant pace indefi-
nitely.

• Continuous attention to technical excellence and good design enhances
agility.

• Simplicity–the art of maximizing the amount of work not done–is es-
sential.

• The best architectures, requirements, and designs emerge from self-
organizing teams.

• At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

devdaily.com 54

1.10. Introduction to Extreme Programming

1.10 Introduction to Extreme Programming

This is a simple introduction to Extreme Programming, taken largely from
the text “eXtreme Programming explained” (the “white book”).

1.10.1 Risk: The Basic Problem

Quoting from the white book, “the basic problem of software development
is risk”. Here are some examples:

• Schedule slips

• Project canceled

• System goes sour

• Defect rate

• Business misunderstood

• Business changes

• False feature rich

• Staff turnover

1.10.2 Four Variables

In the XP model there are four control variables in software development:

1. Cost

2. Time

3. Quality

4. Scope

Customers and managers get to pick the values of any three of the variables.

devdaily.com 55

1.10. Introduction to Extreme Programming

1.10.3 The Cost of Change

Under certain circumstances the exponential rise in the cost of changing
software over time can be flattened. If the cost curve can be flattened, old
assumptions about the best way to develop software no longer hold true.
Several factors make code easy to change, even after years of production:

1. A simple design

2. Automated tests

3. Lots of practice in modifying the design

1.10.4 Four Values

1. Communication

2. Simplicity

3. Feedback

4. Courage

1.10.5 Basic Principles

1. Rapid Feedback

2. Assume simplicity

3. Incremental change

4. Embracing change

5. Quality work

1.10.6 Back to Basics

1. Coding

2. Testing

3. Listening

4. Designing

devdaily.com 56

1.10. Introduction to Extreme Programming

1.10.7 The Solution

1. The Planning Game
Business people get to decide:

• Scope

• Priority

• Composition

• Dates of releases

Technical people get to decide:

• Estimates

• Consequences

• Process

• Detailed scheduling

2. Small Releases

3. Metaphor

4. Simple Design

5. Testing

6. Refactoring

7. Pair Programming

8. Collective Ownership

9. Continuous Integration

10. 40-Hour Week

11. On-Site Customer

12. Coding Standards

devdaily.com 57

1.11. OO Summary

1.11 OO Summary

This section provides a summary of our Day One activities.

1.11.1 OO Concepts

Software concepts essential to object orientation:

• Encapsulation – the grouping of related ideas into unit. Encapsulating
attributes and behaviors.

• Inheritance – a class can inherit its behavior from a superclass (parent
class) that it extends.

• Polymorphism – literally means “many forms”.

• Information/implementation hiding – the use of encapsulation to keep
implementation details from being externally visible.

• State retention – the set of values an object holds.

• Oject identity – an object can be identified and treated as a distinct
entity.

• Message passing – the ability to send messages from one object to
another.

• Classes – the templates/blueprints from which objects are created.

• Genericity – the construction of a class so that one or more of the
classes it uses internally is supplied only at run time.

1.11.2 UML

The UML defines nine standard diagrams:

1. Use Case

2. Class

3. Interaction

(a) Sequence

(b) Collaboration

devdaily.com 58

1.11. OO Summary

4. Package

5. State

6. Activity

7. Deployment

Rational Unified Process

• Inception – a discover phase, where an initial problem statement and
functional requirements are created.

• Elaboration – the product vision and architecture are defined, con-
struction cycles are planned.

• Construction – the software is taken from an architectural baseline to
the point where it is ready to make the transition to the user commu-
nity.

• Transition – The software is turned into the hands of the user’s com-
munity.

Agile Methods

• Our highest priority is to satisfy the customer through early and con-
tinuous delivery of valuable software.

• Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

• Business people and developers must work together daily throughout
the project.

• Build projects around motivated individuals. Give them the environ-
ment and support they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

• Working software is the primary measure of progress.

devdaily.com 59

1.11. OO Summary

• Agile processes promote sustainable development. The sponsors, de-
velopers, and users should be able to maintain a constant pace indefi-
nitely.

• Continuous attention to technical excellence and good design enhances
agility.

• Simplicity–the art of maximizing the amount of work not done–is es-
sential.

• The best architectures, requirements, and designs emerge from self-
organizing teams.

• At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Design Patterns

• Repeating patterns - “Her garden is like mine, except that in mine I
use astilbe.”

• Recurring solutions to design problems you see over and over.

• A set of rules describing how to accomplish certain tasks in the realm
of software development.

• Made famous by the text “Design Patterns”, by Gamma, Helm, et al.

devdaily.com 60

Chapter 2

Day 2: The Java
Programming Language

2.1 Introduction

2.1.1 Chapter objectives

• Review the Java design goals.

• Understand the reserved Java keywords.

• Work with Java strings and arrays.

• Create standalone Java applications.

• Create Java classes that use and extend one another.

• Write programs that use and handle exceptions.

• Learn about Java interfaces.

• Understand how to package your Java classes.

61

2.1. Introduction

2.1.2 Java design goals

• Simple – syntax like C, but easier.

• Secure – compile- and runtime-support for security.

• Distributed – built to run over networks.

• Object-oriented – designed from the ground-up to be object-oriented.

• Robust – strongly typed, memory management, exception handling.

• Portable – “Write Once, Run Anywhere”. Runs on any platform with
a JVM; Windows, Unix, Linux, Apple, AS/400, cell phones, desktop
sets, . . .

• Interpreted – Java bytecode is portable.

• Multithreaded – much easier to write multithreaded programs.

• Dynamic – classes are loaded as needed.

• High-performance – just-in-time compilers, advanced memory man-
agement makes Java programs faster.

2.1.3 What is Java?

• A very portable object-oriented programming language.

• A large supporting class library that covers many general needs.

• Can creates Applets, Applications, Servlets, JavaServer Pages, and
more.

• An open standard – the language specification is publicly available.

• JVM - Java Virtual Machine.

2.1.4 How/where to get Java

• http://java.sun.com

• IBM

• A variety of IDE’s (Integrated Development Environments)

– Borland – JBuilder

devdaily.com 62

2.1. Introduction

– IntelliJ – IDEA

– IBM – Visual Age for Java

– Symantec/BEA – Visual Cafe

– Open Source – Netbeans

– More . . .

devdaily.com 63

2.2. First Steps with Java

2.2 First Steps with Java

2.2.1 Java Commands and Utilities

• javac - the Java compiler

• java - the Java bytecode interpreter (JVM)

• appletviewer - lets you view applets without a browser

• jdb - the Java debugger

• javadoc - a utility that lets you generate documentation from your
Java source code and the Javadoc comments you place in your source
code

• jar - Java archive utility (similar to the Unix tar command)

2.2.2 A first application

• Assuming you have the JDK downloaded/installed, create a first Java
application:

public class Hello
{
public static void main(String[] args)
{
System.out.println("Hello, world");

}
}

• Save the file as Hello.java.

• Compile the file to Java bytecode:

javac Hello.java

• Run the program:

java Hello

devdaily.com 64

2.2. First Steps with Java

2.2.3 main

• When you run a Java application, the system locates and runs the
main method for that class.

• The main method must be public, static, and void.

• The main method must accept a single argument of type String[].

• The arguments in the String array passed to main are program argu-
ments, or command-line arguments.

• An application can have any number of main methods, because each
class can have one.

• This is good, because each class can have a main method that tests
it’s own code.

devdaily.com 65

2.3. Variables, constants, and keywords

2.3 Variables, constants, and keywords

2.3.1 Primitive data types

• Java has built-in ”primitive” data types.

• These primitives support integer, floating-point, boolean, and charac-
ter values.

• The primitive data types of Java are:

boolean either true or false
char 16-bit Unicode 1.1 character
byte 8-bit integer (signed)
short 16-bit integer (signed)
int 32-bit integer (signed)
long 64-bit integer (signed)
float 32-bit floating-point
double 64-bit floating-point

• Samples:

int i = 1;
int age = 38;
float balance = 1590.55;
char a = ’a’;
boolean isTrue = true;

2.3.2 Literals

• A literal is a vlue that can be assigned to a primitive or string variable,
or passed as an argument to a method call.

boolean literals

• true

• false

• boolean isTrue = true;

devdaily.com 66

2.3. Variables, constants, and keywords

char literals

• ’\n’ – newline

• ’\r’ – return

• ’\t’ – tab

Floating-point literals

• Expresses a floating-point numerical value.

• 3.1438 – a decimal point

• 4.33E+11 – E or e; scientific notation

• 1.282F – F or f; 32-bit float

• 1355D – D or d; 64-bit double

String literals

• A sequence of text enclosed in double quotes.

• String fourScore = "Four score and seven years ago";

2.3.3 Constants

• Constants are variables whose value does not change during the life of
the object.

• Java does not have a constant keyword.

• In Java you define a constant like this:

static final String name = "John Jones";
static final float pi = 3.14159;

devdaily.com 67

2.3. Variables, constants, and keywords

2.3.4 Reserved keywords

• Reserved Java keywords:

abstract default if private throw
boolean do implements protected throws
break double import public transient
byte else instanceof return try
case extends int short void
catch final interface static volatile
char finally long super while
class float native switch
const for new synchronized
continue goto package this

Fibonnaci program

• Here is a Fibonnaci program from The Java Programming Language:

class Fibonacci {
public static void main (String args[])
{

int lo = 1;
int hi = 1;
System.out.println(lo);
while (hi < 50)
{

System.out.println(hi);
hi = lo + hi;
lo = hi - lo;

}
}

}

• Type this code into the proper filename.

• Compile and run the program.

• Discuss the results.

devdaily.com 68

2.4. Arrays

2.4 Arrays

• An array is a collection of variables of the same type.

• A variable declared in brackets, [], is an array reference.

• Three steps

– Declaration – tell the compiler what the name is and the type of
its elements.

– Construction –

– Initialization

int numbers[]; // declaration
numbers = new int[100]; // construction
for (int i=0; i<100; i++)
{
numbers[i] = i;

}

String username[];
float[] balance;

• Components of an array are accessed by a simple integer index.

• Element indexing begins with the number 0.

username[0] = "Fred";
username[1] = "Barney";

• The size of an array is easily accessed with the length attribute.

for (int i=0; i<username.length; i++)
{

System.out.println("The user’s name is: " + username[i]);
}

• Indexing past the end of an array throws an exception.

• Multidimensional arrays can be created.

devdaily.com 69

2.5. Strings

2.5 Strings

2.5.1 String objects

• Java provides a String class to deal with sequences of characters.

String username = "Fred Flinstone";

• The String class provides a variety of methods to operate on String
objects.

• The equals() method is used to compare Strings.

• The length() method returns the number of characters in the String.

• The + operator is used for String concatenation.

• String objects are read-only (also called immutable).

• In the example below, the second assignment gives a new value to the
object reference str, not to the contents of the string:

str = "Fred";
str = "Barney"

• An array of char is not a String.

2.5.2 StringBuffer class

• The StringBuffer class is often used when you need the ability to
modify strings in your programs.

• Manipulating a StringBuffer can be faster than creating-re-creating
String objects during heavy text manipulation.

• StringBuffer objects are mutable.

• Useful methods include append(), charAt(), indexOf(), insert(),
length(), and replace().

devdaily.com 70

2.5. Strings

Exercise

• What is the output of the following class?

class StringTest {
public static void main (String args[]) {

String str1 = null;
String str2 = null;
str1 = "Fred";
str2 = str1;
System.out.println("str1: " + str1);
System.out.println("str2: " + str2);

str1 = "Barney";
System.out.println("str1: " + str1);
System.out.println("str2: " + str2);

}
}

Exercise

• Modify the Hello application so it reads the a user’s name from the
command line, and writes the user’s name as part of the output.

• Here is the source code for the original class:

public class Hello
{
public static void main(String[] args) {
System.out.println("Hello, world");

}
}

• Assuming that the users name is Al, after the changes the output of
the program should be:

Hello, Al

devdaily.com 71

2.6. Comments and Javadoc

2.6 Comments and Javadoc

2.6.1 Types of comments

• Three different ways to put comments in your Java code:

// define a comment to the end of the current row
/* ... */ define a multi-line comment between the two symbols
/** ...*/ a ”Javadoc” multi-line comment

2.6.2 Javadoc comment tags

• The following special tags in Javadoc comments have predefined pur-
poses.

@see

• Creates a link to other javadoc documentation.

• Name any identifier, but qualify it sufficiently.

@see Attr
@see COM.missiondata.web.utils.PageFactory;

@param

• Documents a single parameter to a method.

• Have one for each parameter of the method.

• First word is the parameter name, the rest is its description.

@param max The maximum number of words to read.

@return

• Documents the return value of a method:

@return The number of words actually read.

devdaily.com 72

2.6. Comments and Javadoc

@exception

• Documents an exception thrown by the method.

• Should have one for each type of exception the method throws.

@exception UnknownName The name is unknown.
@exception IllegalArgumentException
The name is <code>null</code>.

@deprecated

• Marks an identifier as being unfit for continued use.

• Code using a deprecated type, constructor, method or field will gen-
erate a warning when compiled.

\begin{enumerate}
\item
\item @deprecated Do not use this anymore.
\item
\end{enumerate}

@author

• Specify the author of the code.

@author Alvin Alexander

@version

• Specify an arbitrary version.

@version 1.11

devdaily.com 73

2.6. Comments and Javadoc

@since

• Specify an arbitrary version specification that denotes when the tagged
entity was added to your system

@since 2.1

2.6.3 A comment example

• A heavily-commented Attr class:

class Attr
{

\begin{enumerate}
\item The attribute name. */
\end{enumerate}

\end{enumerate}
private String name;

\begin{enumerate}
\item The attribute value. */
\end{enumerate}

\end{enumerate}
private Object value = null;

/**
* Creates a new attribute.
* @see Attr2
*/
public Attr (String name)
{

this.name = name;
}

}

2.6.4 Notes on Usage

• Use the javadoc command to print a separate set of HTML javadoc
pages for your classes.

devdaily.com 74

2.6. Comments and Javadoc

• See http://java.sun.com/j2se/1.4/docs/api/ for an example of javadoc
documentation pages for the Java2 Platform.

• Comment skew – comments become out of date as the source code
changes over time.

• Some programmers write documentation, others do not.

• Some businesses have technical writers that end up needing write ac-
cess to your Java source code files.

devdaily.com 75

2.7. Flow control and loops

2.7 Flow control and loops

2.7.1 Introduction

A program consisting of only consecutive statements is immediately use-
ful, but very limited. The ability to control the order in which statements
are executed adds enormous value to any program. This lesson covers all
the control flow statements that direct the order of execution, except for
exceptions.

2.7.2 Objectives

Upon completion of this section, students will be able to:

• Define expression statements and declaration statements.

• Describe the operation of Java’s control-flow statements.

• Use Java’s if-else, switch, while, do-while, and for statements.

• Use labels, and labeled break and continue statements.

2.7.3 Statements and blocks

• Two basic statements – expression statements, declaration statements.

• Expression statements – such as i++ –have a semi-colon at the end.

Expressions that can be made into statements

• Assignment: those that contain =

• Prefix or postfix forms of ++ and --

• Methods calls.

• Object creation statements (new operator).

Declaration statements

• Declare a variable and initialize it to a value.

• Can appear anywhere inside a block.

devdaily.com 76

2.7. Flow control and loops

• Local variables exist only as long as the block containing their code is
executing.

• Braces group zero or more statements into a block.

2.7.4 if-else

• Basic form of conditional control flow.

if (boolean-expression)
statement1

else
statement2

• Example

class IfElse1 {
public static void main (String[] args) {
int i = 10;
if (i==1)

System.out.println("i == 1");
else if (i==2)

System.out.println("i == 2");
else if (i==3)

System.out.println("i == 3");
else

System.out.println("don’t know what ’i’ is");
}

}

2.7.5 switch

• Evaluates an integer expression in the switch statement.

• Transfers control to an appropriate case label.

• If no match is found, control is transferred to a default label.

• If there is no default label and no other match is found, the switch
statement is skipped.

devdaily.com 77

2.7. Flow control and loops

• A break statement is usually used at the end of each case. If a break
is not used, control flow falls through to the next case.

• All case labels must be constant expressions.

• The value that you are switching on must be byte, short, char, or
int.

• Example:

switch (verbosity)
{

case BLATHERING:
System.out.println("blah blah blah ... my name is ...");

case NORMAL:
System.out.println("What is your name?");

case TERSE:
System.out.println("Yo.");
break;

default:
System.out.println("Hello.");

}

2.7.6 while and do-while

• A while loop is executed repeatedly until its boolean expression eval-
uates to false.

• A while loop will execute zero or more times.

• The boolean-expression can be any expression that returns a boolean
value.

while (boolean-expression)
statement

• A do-while loop executes at least once:

do
statement

while (boolean-expression)

devdaily.com 78

2.7. Flow control and loops

2.7.7 for

• Used to loop over a range of values from beginning to end.

for (init-expr; boolean-expr; incr-expr)
statement

• Typically used to iterate a variable over a range of values.

char ch[] = new char[s.length()];
for (int i=0; i<s.length(); i++)
{

ch[i] = s.charAt(i);
}

2.7.8 Labels

• Statements can be labeled.

• Typically used on blocks and loops.

label : statement

2.7.9 break

• Used to exit from any block (not just a switch).

• Most often used to break out of a loop.

• An unlabeled break terminates the innermost switch, for, while, or
do-while.

• To terminate an outer statement, label the outer statement and use
its label name in the break statement.

2.7.10 continue

• Skips to the end of a loop’s body and evaluates the boolean expression
that controls the loop.

devdaily.com 79

2.7. Flow control and loops

• Has meaning only inside loops: while, do-while, and for.

• A labeled continue will break out of any inner loops on its way to the
next iteration of the named loop.

2.7.11 return

• Terminates execution of a method and returns to the invoker.

• If the method has a return type, the return must include an expression
of a type that could be assigned to the return type.

public static double absolute (double val)
{

if (val<0)
return -val;

else
return val;

}

2.7.12 No goto Statement

• No goto construct to transfer control to an arbitrary statement in a
method.

• Primary uses of goto in other languages:

– Controlling outer loops from within nested loops. Java provides
labeled break and continue.

– Skipping the rest of a block of code that is not in a loop when an
answer or error is found. Use a labeled break.

– Executing cleanup code before a method or block of code exits.
Use a labeled break, or the finally construct of the try statement.

devdaily.com 80

2.8. Classes and objects

2.8 Classes and objects

2.8.1 Introduction

• Class – the fundamental unit of programming in Java.

• Classes contain the attributes and behaviors of the objects you will
create.

• Classes define how an object should be created, how it should be de-
stroyed, and how it should behave during it’s existence.

2.8.2 Objectives

Upon completion of this section, you should be able to:

• Define the difference between a Java class and an object.

• Create a simple Java class.

• Create constructors for your classes.

• Define the behavior of your classes.

• Be able to describe Java’s garbage collection process.

• Declare and initialize instance variables.

• Access data members and methods of an instance.

• Discuss nested classes and Interfaces.

• Write your own complete Java classes.

2.8.3 A Simple Class

• Each object is an instance of a class.

• The basics of a class are it’s fields and methods (or, attributes and
behaviors).

class Body {
public long idNum;
public String nameFor;
public Body orbits;

devdaily.com 81

2.8. Classes and objects

public static long nextID = 0;
}

• First declare the name of the class:

Body mercury;
Body earth;

• mercury and earth are references to objects of type Body.

• During it’s existence, mercury may refer to any number of Body ob-
jects.

• Note - this version of Body is poorly designed.

2.8.4 Fields

• A class’s variables are called fields (or attributes).

• Every Body object has its own specific instances of these fields, except
for nextID.

• Changing the orbits of one object will not affect the orbits of others.

2.8.5 Access Control and Inheritance

• We declared many fields of Body to be public; this is not always a
good design idea.

• Four possible access control modifiers:

– private – members declared private are accessible only in the
class itself.

– protected – accessible in the class itself, and are accessible to,
and inheritable by, code in the same package, and code in sub-
classes.

– public – accessible anywhere the class is accessible, and inher-
ited by all subclasses.

– package – members declared with no access modifier are acces-
sible in the class itself and are accessible to, and inheritable by,
code in the same package.

devdaily.com 82

2.8. Classes and objects

2.8.6 Creating Objects

• Objects are created using the new construct:

Body sun = new Body();

Body earth;
earth = new Body();

• This example declare two references (sun, earth) that can refer to
objects of type Body.

• Using new is the most common way to create objects.

• Java runtime (a) allocates enough space to store the fields of the object,
(b) initializes the object, and (c) returns a reference to the new object.

• If the system can’t find enough free space, it runs the garbage collector.

• If there is not enough free space available, new will throw an Out-
OfMemoryError exception.

2.8.7 Constructors

• Constructors have the same name as the class they initialize.

Body ()
{

idNum = nextID++;
}

• Move the responsibility for idNum inside the Body class.

Body sun = new Body(); // idNum is 0
Body earth = new Body(); // idNum is 1

• Constructors can take zero or more parameters.

• Constructors have no return type.

• Constructors are invoked after the instance variables of the new object
have been assigned their default initial values, and after their explicit
initializers are executed.

devdaily.com 83

2.8. Classes and objects

Constructor example

• The following three classes demonstrate how constructors are called
for classes and superclasses.

public class ParentClass {
public ParentClass() {
System.out.println("ParentClass constructor was called");

}
}

public class ChildClass extends ParentClass {
public ChildClass() {
System.out.println("ChildClass constructor was called");

}
}

public class Main {
public static void main(String[] args) {
ChildClass cc = new ChildClass();

}
}

2.8.8 Methods

• Here is a sample method for the Body class. The method name is
toString.

public String toString()
{

String desc = idNum + " (" + name + ")";
if orbits != null)
{

desc += " orbits " + orbits.toString();
}
return desc;

}

• Returns type String.

devdaily.com 84

2.8. Classes and objects

• Methods contain the code that understands and manipulates an ob-
ject’s state.

• Methods are invoked as operations on an object using the . (dot)
operator.

• Each method takes a specific number of parameters.

• Each parameter has a specified type - primitive or object.

• Methods also have a return type (or void).

Parameter values

• All parameter methods are ”pass by value”.

• Values of a parameter are copies of the values in the invoking method.

• When the parameter is an object, the object reference is passed by
value.

• End result: primitives cannot be modified in methods, objects can.

Using methods to control access

• If data fields (attributes) are public, programmers can change them.

• Generally want to hide the data from programmers that will use the
class.

• If programmers can access a class’s fields directly, you have no control
over what values they can assign.

• In the Body example, nextIDshould be private.

• If necessary, you should provide get methods that allow programmers
to determine the current field value, and set methods to modify the
value. These are called accessors (get) and mutators (set).

2.8.9 this

• Typically use this only when needed.

• Most commonly used as a way to pass a reference to the current object
as a parameter to other methods.

devdaily.com 85

2.8. Classes and objects

• Often used in a case like this:

class Pizza
{

String topping;
Pizza (String topping)
{

this.topping = topping;
}

}

2.8.10 Overloading methods

• Each method has a signature.

• The signature is (a) the name together with (b) the number and (c)
types of parameters.

• Two methods in the same class can have the same name if they have
different numbers or types of parameters.

• This capability is called overloading.

• The compiler compares the number and types of parameters to find
the method that matches the signature.

• The signature does not include the return type or list of thrown ex-
ceptions, and you cannot overload based on these factors.

public void aMethod(String s) {}
public void aMethod() {}
public void aMethod(int i, String s) {}
public void aMethod(String s, int i) {}

2.8.11 Overriding methods

• You override the signature of a method from a superclass.

• Overriding methods must have argument lists with the identical type
and order as the superclass.

• When you override a method of a superclass you should honor the
intended behavior of the method.

devdaily.com 86

2.8. Classes and objects

2.8.12 Static members

• A static member is a member that exists only once per class, as op-
posed to once per object.

• When you declare a field to be static, that means that this field exists
only once per class, as opposed to once for each object (such as the
nextID field of the Body object).

• A static method is invoked on behalf of the entire class.

• A static method can access only static variables and static methods of
the class.

prime = Primes.nextPrime();
id = Vehicle.currentID();

2.8.13 Initialization Blocks

• A class can have initialization blocks to set up fields or other necessary
states.

• Typically these blocks are static.

• Most useful when simple initialization clauses on a field declaration
need a little help.

class Primes {
protected static int[] knownPrimes = new int[4];
static
{

knownPrimes[0] = 2;
for (int i=1; i<knownPrimes.length; i++)
{

knownPrimes[i] = nextPrime();
}

}
}

• You can also have non-static initialization blocks.

devdaily.com 87

2.8. Classes and objects

2.8.14 Garbage collection and finalize

• Java performs garbage collection for you and eliminates the need to
free objects explicitly.

• This eliminates a common cause of errors in C/C++ and other lan-
guages (memory leaks). Never have to worry about dangling refer-
ences.

• When an object is no longer reachable the space it occupies can be
reclaimed.

• Space is reclaimed at the garbage collector’s discretion.

• Creating and collecting large numbers of objects can interfere with
time-critical applications.

finalize

• A class can implement a finalize method.

• This method will be executed before an object’s space is reclaimed.

• Gives you a chance to use the state of the object to reclaim other
non-Java resources.

• finalize is declared like this:

protected void finalize() throws Throwable {
// ...

}

• Important when dealing with non-Java resources, such as open files.

• Example: a class that opens a file should provide a close() method.
Even then, there is no guarantee that the programmer will call the
close() method, so it should be done in a finalize method.

public void close()
{

if (file != null)
{

file.close();

devdaily.com 88

2.8. Classes and objects

file = null;
}

}
protected void finalize() throws Throwable
{

try
{

close();
}
finally
{

super.finalize();
}

}

• The close method is written carefully in case it is called more than
once.

• super.finalize is called to make sure your superclass is also finalized.

• Train yourself to always do this.

2.8.15 The toString() Method

• If an object supports a public toString method that takes no param-
eters and returns a String object, that method is invoked whenever a
+ or += expression has an object of that type where a String object is
expected.

• All primitive types are implicitly converted to String objects when
used in String expressions.

2.8.16 Native Methods

• Used when you need to manipulate some hardware directly, or execute
code not written in Java.

• Portability and safety of the code are lost.

• Implemented using an API provided by the people who wrote the
virtual machine on the platform where the code will run.

devdaily.com 89

2.8. Classes and objects

• The standard API for C programmers is called Java Native Interface
(JNI).

• Other API’s are being defined for other languages.

devdaily.com 90

2.9. Methods and parameters

2.9 Methods and parameters

2.9.1 Methods

• Methods in Java define the behavior of the class.

• Methods are similar to procedures or subroutines in other languages.

• The real benefits of object orientation come from hiding the imple-
mentation of a class behind its operations.

• Methods access the internal implementation details of a class that are
hidden from other objects.

• Hiding data behind methods is so fundamental to object orientation
it has a name – encapsulation.

• Methods have zero or more parameters.

• A method can have a return value.

• A method’s statements appear in a block of curly braces { and } that
follow the method’s signature.

public void speak ()
{

System.out.println("Hey Barney ...");
}

Invoking a Method

• Provide an object reference and the method name, separated by a dot
(.):

fred.speak();

• Parameters are passed to methods as a comma-separated list.

• A method can return a single value as a result, such as an int:

devdaily.com 91

2.9. Methods and parameters

public int add (int a, int b)
{

return a+b;
}

• A method can return no result:

public void setFirstName (String firstName)
{

this.firstName = firstName;
}

The this Reference

• Occasionally the receiving object needs to know its own reference.

public void move (double x, double y)
{

this.x = x;
this.y = y;

}

devdaily.com 92

2.10. Extending Classes

2.10 Extending Classes

2.10.1 Introduction

• It is easy for one Java class to extend the behavior of another Java
class.

• This capability is usually referred to as polymorphism, which means
that an object of a given class can have multiple forms.

2.10.2 Objectives

• Upon completion of this section, students will be able to:

• Extend existing classes.

• Define the terms subclass, superclass, overloading, and overriding.

• Define how constructors of subclasses operate.

• Define the implications of marking a class or method as final.

• Discuss the considerations of cloning classes.

devdaily.com 93

2.10. Extending Classes

2.10.3 An extended class

• An extended class can be used wherever the original class was legal.

• Polymorphism – an object of a given class can have multiple forms.

• The extended class is a subclass.

• The class it extends is the superclass.

• If a class does not explicitly extend a class then it implicitly extends
Object.

• Object declares methods that are implemented by all objects.

devdaily.com 94

2.10. Extending Classes

2.10.4 A simple example

• A simple example of extending a base Animal class:

public abstract class Animal
{
protected boolean hasColdNose;

public abstract String speak();

public void setHasWetNose(boolean hasColdNose) {
this.hasColdNose = hasColdNose;

}
public boolean hasColdNose() {
return hasColdNose;

}
}

public class Dog extends Animal
{
public Dog() {
hasColdNose = true;

}
public String speak() {
return "woof";

}
}

public class Bird extends Animal
{
public Bird() {
hasColdNose = false;

}
public String speak() {
return "chirp";

}
}

devdaily.com 95

2.10. Extending Classes

public class Main
{
public Main() {
Animal fido = new Dog();
Animal bigbird = new Bird();
System.out.println("fido says " + fido.speak());
System.out.println("bigbird says " + bigbird.speak());

}

public static void main(String[] args) {
new Main();

}
}

2.10.5 What protected really means

• A protected class member can be accessed by classes that extend that
class.

• A protected class member also be accessed from code within the same
package.

• A protected class member also be accessed from references of the class’s
type or one of it’s subtypes.

2.10.6 Constructors in extended classes

• When you extend a class, the new class must choose one of it’s super-
class’s constructors to invoke.

• If you do not invoke a superclass constructor as your constructors
first executable statement, the superclass no-arg constructor is auto-
matically invoked before any statements in your new constructor are
executed.

• If the superclass does not have a no-arg constructor, you must explic-
itly invoke one of the superclass’s other constructors, or invoke another
of your own constructors using the this construct.

• If you use super(), it must be the first executable statement of the
constructor.

• The language provides a default no-arg constructor for you.

devdaily.com 96

2.10. Extending Classes

Constructor order dependencies

• When an object is created, all it’s fields are set to default initial values.

• Then the constructor is invoked.

Constructor phases

• Invoke a superclass’s constructor.

• Initialize the fields using their initializers and any initialization blocks.

• Execute the body of the constructor.

Constructor phase example

• An example of how parent/child constructors work:

public class ParentClass {
public ParentClass() {
System.out.println("ParentClass constructor was called");

}
}
public class ChildClass extends ParentClass {
public ChildClass() {
System.out.println("ChildClass constructor was called");

}
}
public class Main {
public static void main(String[] args) {
ChildClass cc = new ChildClass();

}
}

2.10.7 Overriding methods, hiding fields, and nested classes

Overloading – providing more than one method with the same name but with
different signatures. Overriding – replacing a superclass’s implementation
with your own.

devdaily.com 97

2.10. Extending Classes

Overriding

• Signatures must be identical.

• Return type must be the same.

• Only accessible non-static methods can be overridden.

• A subclass can determine whether a parameter in an overridden method
is final.

The super keyword

• Available in all non-static methods of a class.

super.method() – uses the superclass’s implementation of method.

2.10.8 Marking methods and classes final

• No extended class can override the method to change its behavior.
(This is the final version of that method.)

• A class marked final cannot be extended by any other class (and, all
the methods of a final class are implicitly final).

• Security – anyone who uses the class can be sure the behavior will not
change (validatePassword example).

• Serious restriction on the use of the class.

• Final simplifies optimizations.

2.10.9 The object class

• All classes inherit from Object.

• Object’s methods fall in two classes: utilities, and thread support.

Object’s utility methods

• equals(Object o)

• hashCode()

• clone()

devdaily.com 98

2.10. Extending Classes

• getClass()

• finalize()

2.10.10 Anonymous classes

• Use these when the weight of a full class seems too much for your
needs.

• Extend a class or implement an interface.

• Defined at the same time they are created with new.

• Defined in the new expression.

• Cannot have their own constructors.

• Can easily become hard to read.

• Avoid anonymous classes longer than six lines.

• Use them only in the simplest of expressions.

2.10.11 Abstract Classes and methods

• Helpful when some of the behavior is defined for most objects of a
given type, but some behavior makes sense for only particular classes
and not the superclass.

• Declare classes that define only part of an implementation.

• Each method not implemented in an abstract class is marked abstract.

• A class with any abstract methods must be declared abstract.

• Abstract methods must be implemented by subclasses that are not
abstract themselves.

2.10.12 Cloning objects

• A clone method returns a new object whose initial state is a copy of
the current state of the object on which clone was invoked.

• Subsequent changes to the clone will not affect the state of the original.

• Object.clone()

devdaily.com 99

2.10. Extending Classes

Three major considerations in writing a clone method

• Empty Cloneable interface.

• Object.clone() method.

• CloneNotSupportedException.

Four different attitudes a class can have towards clone

• Support clone.

• Conditionally support clone.

• Allow subclasses to support clone but don’t publicly support it.

• Forbid clone.

devdaily.com 100

2.10. Extending Classes

2.10.13 Extending classes: how and when

• Ability to extend classes – large part of the benefits of OOP.

• Creates an ”IsA” relationship, not a ”HasA” relationship.

• Employee / Role example (see text).

2.10.14 Designing a class to be extended

• Choose the access for each part of a class design carefully: public,
protected, private.

• If your design will have subclasses, design your protected parts care-
fully.

Bad effects of public fields

• Fields can be modified at any time by a programmer.

• No way to add functionality.

Non-final classes have two interfaces

• Public interface for programmers using the class.

• Protected interface for programmers extending the class.

devdaily.com 101

2.11. Interfaces

2.11 Interfaces

2.11.1 Introduction

Interfaces are a way to declare a type consisting only of abstract methods
and related constants, classes, and interfaces. An interface in Java is an
expression of pure design, whereas a class is a mix of design and implemen-
tation.

2.11.2 Objectives

Upon completion of this section, students will:

• Describe an interface.

• Define the differences between single and multiple inheritance.

• Show how to implement an interface.

• Describe the differences between interfaces and abstract classes.

2.11.3 An example interface

• Java has single inheritance of implementation – you can extend only
one class.

• Java has multiple interface inheritance.

• All methods in an interface are implicitly abstract.

• Each class that implements the interface must implement all its meth-
ods.

• Methods in an interface are always public.

• Fields in an interface are always static and final.

Nested classes and interfaces

• Nested classes and interfaces let you associate types that are strongly
related to an interface inside that interface.

• Any class or interface inside an interface is public.

• Any classes nested inside an interface are also static.

devdaily.com 102

2.11. Interfaces

• Any interface nested inside a class can be public, protected, package-
accessible, or private.

2.11.4 Single inheritance versus multiple inheritance

• A new class can extend exactly one superclass.

• The new class inherits the superclass’s (a) contract and (b) implemen-
tation.

• Some languages allow multiple inheritance – two or more superclasses.

• Problem of multiple inheritance arises from multiple inheritance of
implementation. (Usually related to a class that maintains state in-
formation.)

2.11.5 Extending Interfaces

• Interfaces can be extended using the extends keyword.

• Interfaces can extend more than one interface:

interface Shimmer extends FloorWax, DessertTopping \{ \ldots

• All methods and constants defined by FloorWax and DessertTopping
are part of Shimmer.

Name Conflicts

• A class or interface can be a subtype of more than one interface.

• What happens when a method of the same name appears in more than
one interface?

2.11.6 Implementing Interfaces

• Most interfaces may have several useful implementations.

• Enumeration is an interface.

devdaily.com 103

2.11. Interfaces

2.11.7 Using an Implementation

• Use an implementing class just by extending it.

• Can also use a technique called forwarding – create an object of an
implementing class and forward all the methods of the interface to
that object.

2.11.8 Marker Interfaces

• Do not declare any methods – mark a class as having some general
property.

• Define no language-level behavior.

• All of the contract is in the documentation.

2.11.9 When to Use Interfaces

Two Important Differences Between Interfaces and Abstract Classes

• Interfaces provide a form of multiple inheritance. A class can extend
only one other class.

• Interfaces are limited to public methods and constants with no im-
plementation. Abstract classes can have a partial implementation,
protected parts, static methods, etc.

Interface or Abstract Class

• These two differences usually direct the choice.

• If multiple inheritance is important or even useful interfaces are used.

• Abstract class lets you define some or all of the implementation.

• Any major class you expect to be extended should be an implementa-
tion of an interface.

devdaily.com 104

2.12. Exceptions

2.12 Exceptions

2.12.1 Introduction

• Applications can run into many kinds of errors during execution.

• Java exceptions provide a clean way to check for errors without clut-
tering code, and provide a mechanism to signal errors directly.

• Exceptions are also part of a method’s contract.

• An exception is thrown when an unexpected error condition is encoun-
tered.

• The exception is then caught be an encompassing clause further up
the method invocation stack.

2.12.2 Objectives

Upon completion of this section, students will be able to:

• Create their own Exception class.

• Throw an exception.

• Define the three choices you have when a method throws an exception.

• Use try/catch/finally to run a method that may throw an exception.

• Describe the purpose of the finally clause, and when it is run.

• Make better decisions about when to throw exceptions in your code.

2.12.3 Creating exception types

• Exceptions are objects.

• Must extend the class Throwable or one of it’s subclasses.

• By convention new exception types extend Exception (a subclass of
Throwable).

public class BadPizzaException extends Exception
{

public String attrName;

devdaily.com 105

2.12. Exceptions

BadPizzaException(String name)
{

super("BadPizzaException: " + name);
attrName = name;

}
}

2.12.4 throw

• Exceptions are thrown using the throw statement.

• Exceptions are objects, so they must be created (with new) before
being thrown.

2.12.5 The throws clause

• The exceptions a method can throw are declared with a throws clause.

• The exceptions a method can throw are as important as the value type
the method returns.

Choices when invoking a method that has a throws clause

• Catch the exception and handle it.

• Catch the exception and map it to one of your exceptions by throwing
an exception of a type declared in your own throws clause.

• Declare the exception in your throws clause and let the exception pass
through your method.

2.12.6 try, catch, and finally

• Exceptions are caught by enclosing code in try blocks.

• The body of try is executed until an exception is thrown or it finishes
successfully.

• If an exception is thrown, each catch clause is examined in turn, from
first to last, to see whether the exception object is assignable tto the
type declared with the catch.

• When an assignable catch is found, its code block is executed. No other catch clause will be executed.

devdaily.com 106

2.12. Exceptions

• Any number of catch clauses can be associated with a try, as long as
each clause catches a different type of exception.

• If a finally clause is present in the try block, the code is executed after
all other processing in the try is complete. This happens no matterhow
the try clause completed – normally, through an exception, or through
a return or break.

finally

• A mechanism for executing a section of code whether or not an excep-
tion is thrown.

• Usually used to clean up internal state or to release non-object re-
sources, such as open files stored in local variables.

• Can also be used to cleanup for break, continue, and return.

• No way to leave a try block without executing its finally clause.

• A finally clause is always entered with a reason; that reason is remem-
bered when the finally clause exits.

2.12.7 When to use exceptions

• Used for ”unexpected error conditions”.

• Not meant for simple expected situations (end of an input stream
should be expected).

devdaily.com 107

2.13. Packages

2.13 Packages

2.13.1 Introduction

• Packages have members that are related classes, interfaces, and sub-
packages.

• Packages are useful for several reasons:

• Packages create a grouping for related interfaces and classes.

• Interfaces and classes in a package can use popular public names that
make sense in one context but might conflict with the same name in
another package.

• Packages can have types and members that are available only within
the package.

2.13.2 Package Naming

• A package name should be unique.A good way to ensure unique pack-
age names is to use an Internet domain name (reversed):

package COM.missiondata.utils;

2.13.3 Package Access

• A public class or interface is accessible to code outside that package.

• Types that are not public have package scope; they are available to all
other code in the same package, but are hidden outside the package
and even from code in nested packages.

• Package scope is the default if public/protected/private are not de-
clared.

2.13.4 Package Contents

• Contain functionally-related classes and interfaces.

• Classes in a package can freely access each other’s non-private mem-
bers.

devdaily.com 108

2.13. Packages

• Should provide logical groupings for programmers looking for useful
interfaces and classes.

• Packages can be nested inside other packages.

2.13.5 Examples

• The Model/View/Controller paradigm can help illustrate a good way
of packaging MVC-related classes for a fictitional Pizza Store project:

com.alspizzastore.model.Pizza
com.alspizzastore.model.Topping

com.alspizzastore.view.OrderEntryScreen
com.alspizzastore.view.ReceiptView

com.alspizzastore.controller.ReceiptController
com.alspizzastore.controller.PricingController

devdaily.com 109

Chapter 3

Day 3: Standard Libraries &
Server-side Programming

3.1 Objectives

• Learn how to read-from and write-to files with IO facilities.

• Gain an introduction to writing network-aware programs with Java.

• Obtain a basic understanding of how to create and use threads in Java
programs.

• Learn how Remote Method Invocation (RMI) works and when/where
it is used.

• Learn how to use the classes in the Collections API.

• Gain an overview of creating international applications.

• Learn the basics behind the HTTP protocol.

• Learn how to use JavaServer Pages (JSPs) and Java Servlets.

110

3.2. IO: Streams and readers

3.2 IO: Streams and readers

• The java.io package provides a rich framework and class library for
reading and writing any type of data (text, numbers, images) in streams
from any type of location (disk, network, memory).

• The package provides 2 class hierarchies: one for byte streams, the
other for character streams.

• Base classes for reading data: InputStream for byte streams, Reader
for character streams.

• Base classes for writing data: OutputStream for byte streams, Writer
for character streams.

• Example of copying one file to another.

Reader in = new FileReader("one.txt");
Writer out = new FileWriter("two.txt");
int token = -1;

while((token != in.read()) != -1)
{
out.write(token);

}
out.close();

• The library uses the decorator pattern to add flexible stream han-
dling. By chaining constructors of various classes, you can change
how streams are read or written. Examples:

1. We need to read some data on disk, and for performance reasons
the read operation should be buffered.

Reader bufferedFileIn =
new BufferedReader(new FileReader("datafile"));

2. Read an in-memory byte array as UTF-8 encoded characters.

devdaily.com 111

3.2. IO: Streams and readers

byte[] data = ...;
Reader charReader =

new BufferedReader(
new InputStreamReader(
new ByteArrayInputStream(data), "UTF-8"));

devdaily.com 112

3.3. Java networking

3.3 Java networking

3.3.1 Introduction

• Socket

• ServerSocket

• URL

• URLConnection

3.3.2 Socket

• Socket socket = new Socket(host, port);

• server is a String or InetAddress.

• UnknownHostException – could not convert the given host/server name
to a TCP/IP address.

• IOException – could not find server or port.

• Methods: getInetAddress(), getPort(), getLocalPort(), getLocalAddress(),
getInputStream(), getOutputStream().

3.3.3 ServerSocket

• Listens for clients.

• Use accept() to accept incoming connections.

– accept returns a Socket.

– Socket socket = serverSocket.accept();

3.3.4 ServerSocket lifecycle

• A new ServerSocket is created on a port using a ServerSocket()
constructor.

• ServerSocket listens on the port using the accept() method.

• Uses getInputStream() and/or getOutputStream().

• Server and client interact using an agreed-upon communication pro-
tocol.

devdaily.com 113

3.3. Java networking

• Either the server or the client (or both) close the connection.

• The server goes back to listening with the accept() method.

3.3.5 URL

• URL page = new URL(”http://www.devdaily.com”);

• getContent()

• openStream()

• openConnection() – returns a URLConnection.

3.3.6 URLConnection

• Created from a URL object using openConnection().

URL url = new URL("http://www.devdaily.com");
URLConnection uc = url.openConnection();

• getInputStream() – read data from the server.

• getContentType() – returns the MIME content type of the data.

• getContentLength() – returns the number of bytes in the content.

devdaily.com 114

3.4. Threads

3.4 Threads

3.4.1 Objectives

• Explain what threads are, how they work, and when to use them.

• Create threads using the Thread class.

• Create threads using the Runnable interface.

• Describe thread states.

• Understand the methods that are used when manipulating threads.

3.4.2 Applications without multiple threads

• Many applications work without multiple threads of concurrency.

• In this world, a sequence of actions is completed in a linear, one-thread-
of-thought-at-a-time manner.

• Java makes it easy for developers to create multiple threads that es-
sentially run simultaneously. (How this really works depends on what
operating system your application is running on.)

• A thread is considered lightweight because it runs within the context
of a full-blown program.

3.4.3 Thread states

• new – an empty thread, with no system resources allocated; all you
can do is start it.

• runnable – the start() method is called, and the thread is not dead
or in the “not runnable” state.

• not runnable – sleep() is invoked, thread calls wait(), thread is
blocking on I/O.

• dead – the end of the run() method has been reached.

devdaily.com 115

3.4. Threads

3.4.4 Creating a threaded class with thread

• Extend the java.lang.Thread class and override its run() method.

• The run() method defines the behavior of the thread while it is run-
ning.

• When the run() method ends, the thread goes into the dead state.

• As a developer, you call the start() method of the thread; the JVM
calls the run() method.

• Never call the run() method directly.

3.4.5 Creating a threaded class with the runnable interface

• Cannot always extend the Thread class because of single inheritance.

• Implement the java.lang.Runnable interface (must implement the
run() method).

• Include a Thread attribute in the class.

• The run() method still defines the behavior of the thread while it is
running.

3.4.6 Thread methods

• sleep(long ms) – causes the thread to sleep for the specified number
of milliseconds.

• yield() – provides a hint to the scheduler that this doesn’t have to
run at the current time, so the scheduler can choose another thread to
run if need be.

• join() – used to let one thread wait for another to terminate.

• interrupt() – used to request that the thread cancel itself.

• notifyAll() – wakes up all waiting threads.

• wait() – used to pause the thread, presumably while it waits for some
condition to be satisfied.

devdaily.com 116

3.4. Threads

3.4.7 Thread references

• The Java Programming Language – excellent chapter on threads.

• Sun’s Java Tutorial, at http://java.sun.com/docs/books/tutorial/, or
more specifically http://java.sun.com/docs/books/tutorial/essential/threads/index.html.

devdaily.com 117

3.5. JavaBeans

3.5 JavaBeans

• A JavaBean is a reusable software component based on Sun’s Jav-
aBeans specification that can be visually manipulated in a builder
tool.

• A JavaBean is simply a Java class that has get and set methods for
each class attribute.

• These get and set methods follow a standard naming convention.

• A set of properties that can be read, changed, or discovered.

• May be serializable.

• May generate or listen to events.

devdaily.com 118

3.6. Remote Method Invocation (RMI)

3.6 Remote Method Invocation (RMI)

• Allows Java programs to call methods on Java objects in different
virtual machines, and even different physical machines.

• An RMI server is a java class that is registered in the JVM.

• The JVM listens on a dedicated port for RMI requests.

• RMI clients call the server through a proxy that implements the same
interface as the server.

• The Java SDK contains the rmic compiler to automatically generate
the proxy and server code required to make a class an RMI server.

3.7 Java Native Interface (JNI)

• Lets you run C programs from Java.

• A great feature if you have a large amount of high-quality C code
already written, and want to leverage that for new Java applications.

• Can also be used if maximizing the speed of the code is critical.

• When using JNI, you may be limiting the portability of your applica-
tion.

devdaily.com 119

3.8. Collections framework

3.8 Collections framework

• The java.util package provides interfaces and implementations for stan-
dard data structures:

– List

– Map

– Set

• Collection is the base interface for all collection types, with methods
for adding, removing, and counting elements.

• Iterator - Interface for iterating over a collection.

• The collections have a single element type: Object. This has two side
effects:

– Primitives such as int, char, and boolean cannot be placed in col-
lections without using their object wrappers (Integer, Character,
Boolean).

– It is up to the programmer to keep collections consistent, since
one can add objects of multple types to a collection.

• Unless explicitly specified in the documentation, assume Collection
implementations are NOT thread safe. Why use the unsafe implemen-
tations at all? Because unless you really are sharing the collections
among threads, they will be considerably faster than the thread-safe
versions.

• Basic collection usage.

Collection stuff = new HashSet();
String kiwi = "Kiwi";

stuff.add("Apple");
stuff.add("Orange");
stuff.add(kiwi);

Iterator it = stuff.iterator();

while(it.hasNext())

devdaily.com 120

3.8. Collections framework

{
String item = (String)it.next();
System.out.println(item);

}

3.8.1 Lists

• In addition to the standard collection methods, the List interface al-
lows for random access of elements through its get and set methods.

• List indices are zero based, so list.get(list.size())) is not a valid element.

List stuff = new ArrayList();

stuff.add("Apple");
stuff.add("Orange");

// what’s the last item? Indexes are zero based!
System.out.println(stuff.get(stuff.size() - 1));

// change the first item to a pear.
stuff.set(0, "Pear");

// now iterate
Iterator it = stuff.iterator();

while(it.hasNext())
{

String item = (String)it.next();
System.out.println(item);

}

• ListIterator allows element addition, removal, and replacement during
iteration.

• The java.util package provides two new List implementations: Ar-
rayList and LinkedList.

• Vector is a legacy class retrofitted to the new Collection framework,
and is thread safe.

devdaily.com 121

3.8. Collections framework

3.8.2 Maps

• Maps associate the data elements in the collection with keys. The
keys are derived from type Object, and may be different a type than
the data. The get and put methods provide access to elements at a
particular key.

Map userAges = new HashMap();

ages.put("John", new Integer(25));
ages.put("Nicole", new Integer(32));
ages.put("Bob", new Integer(43));

// How old is Bob?
Integer bobsAge = (Integer)userAges.get("Bob");

// if we have a user named Nicole, what’s her age?
if(userAges.containsKey("Nicole"))
{
Integer nicolesAge = (Integer)userAges.get("Nicole");
}

• Caution: If the key object is mutable, take care not to change its value
after using it in a Map.

• There are several Map implementations including HashMap and Hashtable.

• As a Java 1.1 legacy class, Hashtable is syncronized for thread safety.

3.8.3 Collection Utilities

• The java.util.Collections class provides standard utilities for Collec-
tions.

– List Sorting

– Binary List Search

– List reversing and shuffling

– Min and Max

– Synchonization

devdaily.com 122

3.8. Collections framework

• Sorting makes use of the Comparator interface, which a programmer
implements to determine how objects of a particular type are to be
ordered.

• The Syncronization methods return thread-safe collections that are
backed by a specified collection. Note that iteration is still not thread
safe in this case.

devdaily.com 123

3.9. Internationalization, localization, and formatting

3.9 Internationalization, localization, and format-
ting

• Locale – a specific place, cultural, political, or geographical.

• Objects can localize their behvior to a user’s expectations (locale-
sensitive object).

• ResourceBundle – methods to look up resources in a bundle by a
string key.

devdaily.com 124

3.10. HTTP protocol

3.10 HTTP protocol

• Underlying protocol for all Web Browser/Web Server communication
whether static or dynamic.

• Uses request and response communication model.

• Cookies

3.10.1 Request and Response

• Client issues a request to the server.

• Server processes the request, and responds to the client.

• The GET verb asks the server for the content at a given URL. The
client may specify extra parameters for the server. These query param-
eters can be seen on the URL in the browser: ”http://www.yahoo.com/search?q=java”.

• The POST verb sends data to the server to be processed. This data is
packaged in the request a well defined format, and is not visible in the
browser. The server responds in the same way as with GET requests.

• Headers are name value pairs that precede the request or response
data. These can indicate such informations as what type of data is
being sent, how long it is, and what type of client/server is doing the
sender.

• Example:

– At the command prompt: telnet www.google.com 80

– When connected type exactly: GET /index.html HTTP/1.1

– Hit enter twice - this sends the request.

– Note the response code - ”200 OK” means the server processed
the request successfully.

– Note the headers: Content-Type, Content-Length, a cookie, and
the web server type.

devdaily.com 125

3.10. HTTP protocol

3.10.2 Cookies

• Simple name/value pairs used to store state on the client.

• Cookies are set when the server sends a Set-Cookie header in a re-
sponse.

• The browser sends the server the cookies back in the request headers.

• The server is only sent the cookies for its domain.

• Many web application platforms (JSP, servlets, ASP) use cookies for
session tracking.

• Cookies have expiration dates after which they are no longer sent to
the server.

• The total cookie header may not exceed 4K, and client sofware may
have more restrictions.

• Due to security concerns some users turn off cookies in their browsers.

devdaily.com 126

3.11. Servlets and JSPs

3.11 Servlets and JSPs

3.11.1 Objectives

• Describe the JSP dynamic HTML model.

• Write JSPs to generate dynamic HTML.

• Include Java code in JSPs.

• Understand and use implicit objects in JSPs.

3.11.2 Introduction/Background

• Original HTML content on the web was largely static HTML pages.

• CGI scripts were the first way of generating HTML pages with dynamic
content.

• Servlets are Java programs that run within a web server, or within a
web application server.

– There is a special Servlet API.

– Servlets work hand-in-hand with databases, JavaBeans, compo-
nents, and JSPs.

• JSPs are a combination of HTML and Java code.

• JSPs are a form of servlets; that is, they are compiled into servlets
behind the scenes. In practice however, they appear quite different,
and appear like a combination of HTML and Java code.

• In practice, JSPs should be approximately 90% HTML code and 10%
Java code.

devdaily.com 127

3.12. Servlets

3.12 Servlets

3.12.1 Objectives

• Understand servlet framework.

• Write basic servlets.

3.12.2 Servlet basics

• Used to deliver dynamic content to web pages.

• Request

• Response

• GET and POST

• The servlet API

• Request, service(), doGet()/doPost(), response.

3.12.3 HelloWorldServlet

• A sample HelloWorldServlet:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class HelloWorldServlet extends HttpServlet
{
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
resp.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html><body>Hello, world</body></html>");
out.close();

}
}

devdaily.com 128

3.12. Servlets

3.12.4 Servlet lifecycle

• Handled by the servlet container.

• Create and initialize the servlet.

• Handle zero or more service calls.

• Destroy and garbage collect the servlet.

• A single servlet instance to handle every request.

3.12.5 HTTPServlet

• Override doGet() to handle GET requests.

• Override doPost() to handle POST requests.

• Both methods take HTTPServletRequest and HTTPServletResponse
as arguments.

• A few other methods, but used much less often – doDelete, doTrace,
doOptions, doPut

3.12.6 HTTPServletRequest

• getMethod()

• getQueryString()

• getRemoteHost()

• getRemoteAddr()

• getAuthType()

• getContentType()

3.12.7 HTTPServletResponse

• getWriter()

• setContentType()

• getOutputStream()

devdaily.com 129

3.13. JavaServer Pages

3.13 JavaServer Pages

• What is a JSP?

• Why use JSPs?

• Directives

• Scriptlets

• Actions

3.13.1 What is a JSP?

• JSPs are a combination of HTML code and Java code.

• JSP files usually have a filename extension of ”.jsp”.

• JSP files are compiled into Servlets by the JSP container.

• Provides automatic session management.

• Implicit programming objects are available, including request, response,
and others.

• JavaBeans are the component model.

3.13.2 JSP engine/container:

• Compiles a JSP page into a servlet (once, the first time it is called).

• Eexecutes the servlets service() method.

• Sends the resulting text back to the caller.

3.13.3 Translation time and request time

• Translation time – the time a JSP is compiled into a Servlet.

• Translation time – certain JSP elements are evaluated at translation
time.

• Request time – the time a JSP is requested by a user.

• Request time – some JSP elements, such as expressions, are evaluated
at request time.

devdaily.com 130

3.13. JavaServer Pages

3.13.4 Scriptlets

• Use <% ... %> syntax to include Java code directly into the JSP.

• Any valid Java code can be included.

3.13.5 Expressions

• Use <%= ... %> syntax to include expressions into a JSP.

• An expression is a piece of Java code that evaluates to some thing or
some value.

• Example: <%= 2+2 %> evaluates to 4.

• Expressions are evaluated at request time.

3.13.6 Declarations

• Use <%! ... %> syntax for declarations.

• Use declarations to declare class scope variables and methods.

3.13.7 Directives

• Use <%@ ... %> syntax for declarations.

• Use directives to declare information needed by the JSP engine.

• Directives include page, include, and taglib.

page directive

• <%@ page contentType="text/html" %>

• Lets the developer specify packages to include.

• Lets the developer specify more advanced page features.

devdaily.com 131

3.13. JavaServer Pages

request Represents the HTTP request as received by the server.
response Represents the HTTP response to be send by the server.
out PrintWriter object that is used to write to the response.
err poop

Figure 3.1: List of implicit JSP objects

taglib directive

• <%@ taglib uri="uriToTaglib" prefix="someID" %>

• Lets the developer include tag libraries.

• Tag libraries are generally powerful, reusable components for web de-
velopers.

• Tag libraries can be created by local developers, are available open
source, or can be purchased.

include directive

• <%@ include file="filename.jsp" %>

• Lets one JSP include another JSP or HTML document.

• The JSP container reads the included file, and creates on servlet.

• Includes occur at translation time.

• If you change the included file . . .

• Works differently than <% jsp:include page="filename.jsp" />

3.13.8 Implicit objects

• As a JSP developer, certain implicit objects are made available to you.

• The JSP contaner provides them for you.

• Some objects, such as request and response, are passed as parameters
to the servlets service() method.

The table below provides details about each implicit object.

devdaily.com 132

3.13. JavaServer Pages

3.13.9 Exception handling

• If a JSP causes an exception to be thrown, good practices dictate that
the exception is handled by code, or that the user be forwarded to an
error page.

• Exceptions can be caught in scriptlets.

• Use the <%@ page errorPage="/error.jsp" %> directive to define
an error page.

• Identify the error page with the page directive, <%@ page isErrorPage="true"
%>.

• The JSP container makes the implicit exception object available to
a defined error page.

devdaily.com 133

3.14. Survey of other server-side Java technologies

3.14 Survey of other server-side Java technologies

• XML

• XSLT

• Enterprise Java Beans

• Java Messaging Service

3.14.1 XML

• eXtensible Markup Language

• Derived from SGML, which is also the original parent language of
HTML.

• XML is a ”meta” language, that can be used to defined an unlimited
number of custom hierarchical data formats.

• Example:

<?xml version="1.0" ?>
<sandwich price="2.00">
<meat>Pastrami</meat>
<bread>Rye</bread>
<cheese slices="1">Swiss</cheese>
<condiments>
<condiment>mustard</condiment>
<condiment>pepper</condiment>

</condiments>
</sandwich>

• In the example above <sandwich>, <condiment>, and all tags within
<> are elements.

• Elements can be nested within each other infinitely deep.

• ”price” and ”slices” are attributes of their respective elements.

• XML must be well formed to be porcessed:

– All tags are closed: <bread>Rye</bread>,
or <bread/> which denotes an empty element.

devdaily.com 134

3.14. Survey of other server-side Java technologies

– Elements must be closed on the same level they start.
<sandwich><meat></sandwich></meat> is not well formed.

– All attributes are within single or double quotes.

• The structure of a particular XML document can be described with
Document Type Definitions (DTD) or schemas. Instances of that
document can then be validated against the corresponding DTD or
schema.

• Why use XML?

– Flexible hierarchical data formatting language that can easily be
read by humans as well as programs.

– Readily available tools for document creation, parsing, and vali-
dation.

– Plaform and programming language neutral.

• The Java API for XML Processing (JAXP) defines a standard interface
for using XML in Java programs. There are several implementations
of this API, including Xerces from the Apache Group and Crimson
from Sun.

3.14.2 XSLT

• eXtensible Stylesheet Language: Transformation

• XSLT documents are instructions that describe how to transform one
XML document into another type of XML document.

• Example uses:

– Converting the XML for an order into HTML that displays the
order to the user.

– Converting an XML invoice from a vendor’s system into XML
that your internal system understands.

• This sample shows how to transform the sandwich XML from the
previous section into HTML.

Input XML:
<?xml version="1.0" encoding="UTF-8"?>
<sandwich price="2.00">

devdaily.com 135

3.14. Survey of other server-side Java technologies

<meat>Pastrami</meat>
<bread>Rye</bread>
<cheese slices="1">Swiss</cheese>

</sandwich>

XSLT:
<!-- XSLT is itself XML -->
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/sandwich">
<!-- the HTML tags are embedded directly in the template -->
<html>
<head><title>My Sandwich</title></head>
<body>
<!-- when executed, the value-of element is replaced

with the actual value -->
Meat: <xsl:value-of select="meat" />

Bread: <xsl:value-of select="bread" />

Cheese: <xsl:value-of select="cheese/@slices" />

slice(s) of <xsl:value-of select="cheese" />

Cost:<xsl:value-of select="@price" />
</body>

</html>
</xsl:template>
</xsl:stylesheet>
Output:
<html>
<head>
<title>My Sandwich</title>

</head>
<body>
Meat:Pastrami

Bread:Rye

Cheese:1 slice(s) of Swiss

Cost: 2.00
</body>
</html>

devdaily.com 136

3.14. Survey of other server-side Java technologies

• The JAXP defines the API for executing XSLT transformations.

3.14.3 Enterprise Java Beans

• Allows the developer to write components without explicitly coding for
database storage, transactions, thread safety, or remote invocation.

• XML configuration files are used to mark how components are mapped
to databases, which methods require transactions, and how the com-
ponents can be accessed.

• The EJB specification is implemented by many vendors including IBM,
Borland, BEA, Oracle, and Macromedia. There are also a few open
source implementations.

3.14.4 Java Messaging Service

• Provides asynchronous message based communication to Java appli-
cations.

• There are two styles of JMS:

– Queues - Messages are stored in queues where they can be pro-
cessed in the order received.

– Publish and Subscribe - Multiple subscribers are notified when
messages are published.

• JMS can guarantee message delivery

• Messages can be processed as part of a transaction. If the transaction
is rolled back, the message activity is also rolled back.

devdaily.com 137

Chapter 4

Day 4: Databases, Best
Practices, and Final Project

Getting Started Setting Up a Database Establishing a Connection Setting
Up Tables Retrieving Values from Result Sets Updating Tables Milestone:
The Basics of JDBC Using Prepared Statements Using Joins Using Trans-
actions Stored Procedures SQL Statements for Creating a Stored Procedure

4.1 Databases and JDBC

4.1.1 Getting things set up

What you need to get started:

• Java JDK (and JDBC).

• JDBC driver for your database.

• A database server (Oracle, Informix, DB2, Postgres, etc.).

• Create the database and tables you want to use.

4.1.2 Connecting to the database

Load the driver

• Class.forName("jdbc.DriverXYZ");

• Class.forName("org.postgresql.Driver");

138

4.1. Databases and JDBC

Create the connection

• Connection conn = DriverManager.getConnection(url,"loginID",
"password");

• The URL:

– jdbc:postgresql:database

– jdbc:postgresql://host/database

– jdbc:postgresql://host:port/database

4.1.3 Statements

• A Statement object is used to send an SQL statement to the DBMS.

• Create a Statement object and then execute it, using the proper
execute method:

– For SELECT statements use executeQuery.

– For statements that create or modify tables use executeUpdate.

• Example:

Statement stmt = conn.createStatement();
String query = "SELECT username, password FROM user";
ResultSet rs = stmt.executeQuery(query);
while (rs.next())
{
String user = rs.getString("username");
String password = rs.getString("password");
System.out.println("Username: " + user);
System.out.println("Password: " + password);

}

devdaily.com 139

4.1. Databases and JDBC

4.1.4 getXXX methods

With ResultSet objects:

• getByte

• getShort

• getInt

• getLong

• getFloat

• getDouble

• getBigDecimal

• getBoolean

• getString

• getBytes

• getDate

• getTime

• getTimestamp

• getAsciiStream

• getUnicodeStream

• getBinaryStream

• getObject

4.1.5 Updating the database

Use executeUpdate when using SQL UPDATE commands:

String update = "UPDATE user SET password=’bar’ WHERE user=’foo’";
stmt.executeUpdate(update);

devdaily.com 140

4.1. Databases and JDBC

4.1.6 PreparedStatements

• Developers often use PreparedStatements because the syntax is eas-
ier.

• Example:

PreparedStatement update =
conn.prepareStatement("UPDATE user SET password = ? WHERE user = ?");

updateSales.setString(1, "bar");
updateSales.setString(2, "foo");

• Intended for, most useful, and high performance, inside of loops where
many INSERT’s or UPDATE’s need to be done at one time.

devdaily.com 141

4.1. Databases and JDBC

4.1.7 A real method

The following method was copied from a production software application.
Note that it uses a PreparedStatement for the syntactical ease of use that
the PreparedStatement offers.

public String getPurchaserEmailAddress(int orderId)
throws SQLException
{
Connection connection = null;
try
{
String email = null;
connection = ConnectionPool.getConnection();
String query = "SELECT email FROM orders WHERE order_id = ?";
PreparedStatement emailQuery = connection.prepareStatement(query);
emailQuery.setInt(1, orderId);
ResultSet rs = emailQuery.executeQuery();
if (rs.next())
{
email = rs.getString(1);

}
return email;

}
finally
{
ConnectionPool.freeConnection(connection);

}
}

devdaily.com 142

4.2. JUnit

4.2 JUnit

4.2.1 Is Testing Important?

Do you think testing your software code is important? Consider the following
examples:

4.2.2 Mars Orbiter

A failure to recognize and correct an error in a transfer of information be-
tween the Mars Climate Orbiter spacecraft team in Colorado and the mis-
sion navigation team in California led to the loss of the spacecraft last week,
preliminary findings by NASA’s Jet Propulsion Laboratory internal peer
review indicate... The peer review preliminary findings indicate that one
team used English units (e.g., inches, feet and pounds) while the other used
metric units for a key spacecraft operation. This information was critical to
the maneuvers required to place the spacecraft in the proper Mars orbit.

4.2.3 USS Yorktown

An article in the November 1998 Scientific American describes an incident
aboard the USS Yorktown, a guided missile cruiser. A crew member mis-
takenly entered a zero for a data value, which resulted in a division by zero,
an error that cascaded and eventually shut down the ship’s propulsion sys-
tem. The Yorktown was dead in the water for a couple of hours because a
program didn’t check for valid input.

4.2.4 Types of tests

We can’t tell the story of working backwards (using JUnit) until we see how
and why we should use tools like JUnit. So first, a little background on
testing.

• Unit tests – An automated exercise of code where the developer may
create an artificial environment to automatically exercise a unit of
code.

• Regression tests – Running the same set of tests regularly or after
known events.

• Black Box tests – Testing based only upon the documentation of
the unit without any knowledge of the implementation.

devdaily.com 143

4.2. JUnit

• White Box tests – Tests based on knowledge of the internals of the
unit.

• Integration tests – Taking separate units of software that have al-
ready been tested and testing them together.

• Bounds tests – Testing the outer ranges of values. Nulls, zeroes,
blanks, etc.

• Stress tests – Testing a system’s ability to handle a desired system
load, typically more than is expected.

• System/Acceptance testing – Making sure the software as a whole
works as expected.

4.2.5 Unit Testing 101

Definitions of unit testing

A few definitions of unit tests from various sources . . .

• A unit test is an automated exercise of code.

• A unit test is written for each module (class), in isolation, to verify its
behavior.

• Unit tests are tests that you, the developer, create to exercise your
code and prove that it works, i.e., prove that each of your methods
meet the criteria of its contract.

• Unit testing is a form of “white box” testing.

• In combination, unit tests can be used to create large regression tests.

C3 (the famous Chrysler C3 project) has over 1300 unit tests, performing
over 13,000 individual checks. They run in about 10 minutes.

4.2.6 Goals of unit testing?

• Test each part (unit) of the code in isolation.

• Create tests that retain their value over time.

• Create much larger regression tests that help demonstrate that the
entire system still works (or not) after changes.

devdaily.com 144

4.2. JUnit

• In the XP view, if a program feature lacks an automated test it is
assumed that it doesn’t work.

• In a team environment unit tests ensure that we don’t break one an-
other’s code.

4.2.7 Unit Testing with JUnit

How to create unit tests with JUnit

1. Build a subclass of the class TestCase.

2. Create as many test methods in this test class as necessary.

3. With JUnit, if each method begins with the name ”test”, like testThis(),
testThat(), etc., the test methods will be discovered automatically.

4. The testing framework collects up all the tests and executes them one
after another.

5. You can create a method named setUp() that sets stuff up before each
test is run.

6. You can create a method named tearDown() that helps you get rid of
stuff after each test is run.

4.2.8 A sample JUnit session

Let’s go back to the need for a Pizza class. Here are the things we want to
be able to do with our Pizza class.

1. Create a means of adding toppings to a pizza.

2. Create a Pizza class and a test class for it.

3. Create methods to get the list of toppings from a pizza.

4. Create a way to remove a topping from a pizza.

5. Create a way to determine the price of a pizza.

For this class your first task is to make sure you can add and remove top-
pings. How do you start?

devdaily.com 145

4.2. JUnit

1. First, make sure you have JUnit set up properly so you can easily use
it.

2. Next, create the desired Pizza class, but implement nothing.

3. Next, create a test class named Pizza. This class will extend TestCase,
and will hold all of your unit tests for the Pizza class.

4. In the Pizza class, start to implement the first test method. The first
thing I want to be able to do is to get a list of toppings that a pizza
has, so I write a little code like this:

public void testToppingsOnNewPizza()
{
Pizza pizza = new Pizza();
List toppings = pizza.getToppings();
assert((toppings.size()==0));

}

5. Run this JUnit test. Does it work?

6. No, it doesn’t work, because the getToppings() method does not
exist. So what do you do next? Make it work. Implement this behavior
in the Pizza class.

7. Go to the Pizza class. Create a method named getToppings(). From
what we know so far it should return a List, and apparently for a new
Pizza(), the best thing to do is to return an empty List (not a null,
but a List with nothing in it).

public List getToppings()
{
return this.toppings;

}

8. Will this work by itself? No, you also have to have a List named
toppings in the Pizza class. Here’s what the Pizza class should look
like:

public class Pizza
{

devdaily.com 146

4.2. JUnit

private List toppings = new LinkedList();

public List getToppings()
{
return this.toppings;

}
}

9. Now run JUnit again . . . does the test work?

4.2.9 Recap

“Whoa . . . that went fast . . . how about a recap?” No problem. Here’s what
we did:

1. Write one test.

2. Compile the test. It should fail (because you haven’t implemented
anything yet).

3. Implement just enough to compile. (Refactor first if necessary.)

4. Run the test and see it fail.

5. Implement just enough to make the test pass.

6. Run the test and see it pass.

7. Refactor for clarity and ”once and only once”.

8. Repeat from the top.

One of the great things to come out of the recent Extreme Programming
movement has been to bring unit testing to the forefront of every developers
thought process.

devdaily.com 147

4.3. Best practices

4.3 Best practices

• Very short iterations, and immediate feedback (XP, RUP).

• Working backwards and ruthless testing (Junit).

• Use source code control (CVS).

• Use build tools (Ant).

• Communicate, communicate, communicate (XP).

• Don’t live with broken windows.

• Code generators.

• On-site customer (XP).

• Don’t repeat yourself (DRY).

• Business ROI.

devdaily.com 148

4.4. Refactoring

4.4 Refactoring

Refactoring is a technique to restructure code in a disciplined way. Code
that smells. :)

• Refactoring is a technique to restructure code in a disciplined way.

• A change to the system that leaves its behavior unchanged, but en-
hances some nonfunctional quality - simplicity, flexibility, understand-
ability, performance.

Like Design Patterns, there is a long list of well-known refactorings:

• Add Parameter

• Change Reference to Value

• Change Value to Reference

• Decompose Conditional

• Duplicate Observed Data

• Encapsulate Collection

• Encapsulate Downcast

• Extract Class

• Extract Interface

• Extract Method

• Extract Subclass

• Extract Superclass

• Hide Delegate

• Hide Method

• Inline Class

• Inline Method

• Inline Temp

• Many more . . .

• http://www.refactoring.com

devdaily.com 149

4.5. Final project

4.5 Final project

Note – the final project will vary per class.

devdaily.com 150

Bibliography

[1] Cockburn: Surviving Object-Oriented Projects

[2] Hunt, Thomas: The Pragmatic Programmer

[3] http://java.sun.com/docs/books/tutorial/ – Sun’s online tutorials

[4] Rosenberg, Scott: Use Case Driven Object Modeling with UML, A
Practical Approach

[5] Fowler: UML Distilled

[6] Schneider, Winters: Applying Use Cases

[7] Cockburn: Writing Effective Use Cases

[8] http://books.txt.com – use case templates

[9] Kruchten: The Rational Unified Process

[10] Alhir: UML in a Nutshell

[11] Visual Modeling with UML

[12] Page-Jones: Fundamentals of Object-Oriented Design in UML

[13] Arnold, Gosling, Holmes: The Java Programming Language, Third
Edition

[14] Hall: Core Servlets and JavaServer Pages

[15] Sun: JDBC API Tutorial and Reference, Second Edition

[16] Fowler: Refactoring; Improving the Design of Existing Code

[17] Kernighan, Pike: The Practice of Programming

151

Bibliography

[18] http://java.sun.com

[19] http://www.xprogramming.com

[20] http://www.extremeprogramming.org

[21] http://www.junit.org

[22] http://www.martinfowler.com

[23] http://members.aol.com/acockburn – Alistair Cockburn

[24] http://www.sei.cmu.edu/cmm/cmm.html – Capability Maturity Model
for Software (CMM or SW-CMM).

devdaily.com 152

